K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

a^2 + b^2 + ab + bc+ ac < 0

<=> a^2 + b^2 + c^2 +ab + bc+ ac < c^2

<=> 2(a^2 + b^2 + c^2 +ab + bc+ ac) < 2c^2

<=> (a+b+c)^2 + a^2 + b^2 + c^2 < 2 c^2

Mà (a+b+c)^2 >= 0 nên suy ra a^2 + b^2 + c^2 < c^2

suy ra dpcm

nhầm a^2 + b^2 + c^2 < 2c^2 và suy ra dpcm

Ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab\)

\(\Rightarrow\dfrac{1}{a^2-ab+b^2}\le\dfrac{1}{ab}=\dfrac{abc}{ab}=c\) ( do $abc=1$ )

Tương tự ta có :

\(\dfrac{1}{b^2-bc+c^2}\le a\)

\(\dfrac{1}{c^2-ab+a^2}\le b\)

Cộng vế với vế các BĐT trên có :

\(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)

Dấu "=" xảy ra khi $a=b=c$

NV
10 tháng 3 2021

\(VT=\dfrac{1}{a^2+b^2-ab}+\dfrac{1}{b^2+c^2-bc}+\dfrac{1}{c^2+a^2-ca}\)

\(VT\le\dfrac{1}{2ab-ab}+\dfrac{1}{2bc-bc}+\dfrac{1}{2ca-ca}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c=1\)

14 tháng 3 2018

Do: \(a^2+b^2+c^2=1\text{ nen }a^2\le1,b^2\le1,c^2\le1\)

\(\Rightarrow a\ge-1;b\ge-1;c\ge-1\)

\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)

\(\Rightarrow1+a+b+c+ab+bc+ca+abc\ge0\)

Cần C/m:

\(1+a+b+c+ab+bc+ca\ge0\)

Ta có: 

\(1+a+b+c+ab+bc+ca\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ca+a+b+c\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2+2\left(a+b+c\right)+2ab+2bc+2ca+abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)

\(\Leftrightarrow\left(a+b+c+1\right)^2\ge0\left(\text{luon dung}\right)\)

=> ĐPCM

14 tháng 3 2018

Bấm vào câu hỏi tương tự 

hoặc lên Học24h 

4 tháng 1 2018

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow ab+bc+ca=0\Leftrightarrow\dfrac{ab+bc+ca}{abc}=0\)\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) (1)

Ta có: \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\) (Bn thự cm nhé)

(1) \(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\Leftrightarrow abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=3\)

\(\Leftrightarrow\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=3\left(đpcm\right)\)

9 tháng 2 2016

a2+b2+c2=1a2+b2+c2=1

|a|;|b|;|c|≤1|a|;|b|;|c|≤1

−1≤a;b;c≤1−1≤a;b;c≤1

(a+1)(b+1)(c+1)≥0(a+1)(b+1)(c+1)≥0

ab+bc+ac+a+b+c+1+abc≥0(1)ab+bc+ac+a+b+c+1+abc≥0(1)

Mặt khác ta có :

(1+a+b+c)2≥0(1+a+b+c)2≥0

a2+b2+c2+2(ab+bc+ac)+2(a+b+c)+1≥0a2+b2+c2+2(ab+bc+ac)+2(a+b+c)+1≥0

2(a+b+c+ab+bc+ac+1)≥02(a+b+c+ab+bc+ac+1)≥0

(a+b+c+ab+bc+ac+1)≥0(2)(a+b+c+ab+bc+ac+1)≥0(2)

 

9 tháng 2 2016

trong nâng cao và phát triển có bài này thật đấy

 

8 tháng 12 2017

Biến đổi từ giả thuyết: 
a + b + c = 0 
<=> (a + b + c)² = 0 
<=> a² + b² + c² + 2(ab + bc + ca) = 0 
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1) 

CẦn chứng minh: 

2(a^4 + b^4 + c^4) = (a² + b² + c²)² 

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²) 

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1)) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

8 tháng 12 2017

Biến đổi từ giả thuyết: 
a + b + c = 0 
<=> (a + b + c)² = 0 
<=> a² + b² + c² + 2(ab + bc + ca) = 0 
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1) 

CẦn chứng minh: 

2(a^4 + b^4 + c^4) = (a² + b² + c²)² 

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²) 

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1)) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b ++c=0

=> Đpcm

10 tháng 3 2021

Ta có \(a+b+c=2\Leftrightarrow b+c=2-a\).

Do đó \(1=ab+bc+ca=a\left(b+c\right)+bc=a\left(2-a\right)+bc\Leftrightarrow bc=a^2-2a+1\).

Áp dụng bất đẳng thức AM - GM ta có:

\(4bc\le\left(b+c\right)^2\Leftrightarrow4\left(a^2-2a+1\right)\le\left(2-a\right)^2\Leftrightarrow3a^2-4a\le0\Leftrightarrow a\left(3a-4\right)\le0\Leftrightarrow0\le a\le\dfrac{4}{3}\).

Tương tự với b, c. Ta có đpcm.