K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017
Đừng bumhiacopski chủ giá
21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

22 tháng 12 2017

a=b=c=2 thay vào ra min cái này là tay tui tự gõ ra a=b=c=2 chả có bước nào. còn chi tiết sau nhớ nhắc tui làm :D

22 tháng 12 2017

Áp dụng BĐT Mincopxki và AM-GM có:

\(T=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)

\(=\sqrt{\frac{81}{\left(a+b+c\right)^2}+\frac{\left(a+b+c\right)^2}{16}+\frac{15\left(a+b+c\right)^2}{16}}\)

\(=\sqrt{2\sqrt{\frac{81}{\left(a+b+c\right)^2}\cdot\frac{\left(a+b+c\right)^2}{16}}+\frac{15\cdot6^2}{16}}\)

\(=\sqrt{2\sqrt{\frac{81}{16}}+\frac{15\cdot6^2}{16}}=\frac{3\sqrt{17}}{2}\)

Khi \(a=b=c=2\)

13 tháng 12 2017

\(A=\frac{a}{b+c+2a}+\frac{b}{a+c+2b}+\frac{c}{a+b+2c}\)

\(=\frac{a}{\left(b+a\right)+\left(a+c\right)}+\frac{b}{\left(a+b\right)+\left(c+b\right)}+\frac{c}{\left(a+c\right)+\left(b+c\right)}\)

Áp dụng bđt \(\frac{x}{y+z}\le\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}\right)\) ta có :

\(A\le\frac{1}{4}\left(\frac{a}{b+a}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{b+c}\right)\)

\(\Leftrightarrow A\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{a+c}{a+c}+\frac{b+c}{b+c}\right)=\frac{1}{4}.3=\frac{3}{4}\) có GTLN là \(\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

13 tháng 12 2017

\(GTLN:\frac{a}{b+c+2a}+\frac{b}{a+c+2b}+\frac{c}{a+b+2c}=\frac{3}{4}\)

5 tháng 2 2022

\(không\) \(dùng\) \(bđt\) \(làm\) \(sao\) \(ra\) \(được\) ??

\(\sqrt{a^2+\dfrac{1}{b^2}}=\dfrac{1}{\sqrt{17}}.\sqrt{\left(1+4^2\right)\left(a^2+\dfrac{1}{b^2}\right)}\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}\right)\left(bunhiacopki\right)\)

\(tương-tự:\sqrt{b^2+\dfrac{1}{c^2}}\ge\dfrac{1}{\sqrt{17}}\left(b+\dfrac{4}{c}\right)\)

\(\sqrt{c^2+\dfrac{1}{a^2}}\ge\dfrac{1}{\sqrt{17}}\left(c+\dfrac{4}{a}\right)\)

\(\Rightarrow Q\ge\dfrac{1}{\sqrt{17}}\left(a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{\sqrt{17}}\left[16a+\dfrac{4}{a}+16b+\dfrac{4}{b}+16c+\dfrac{4}{c}-15\left(a+b+c\right)\right]\)

\(bđt:cosi\Rightarrow16a+\dfrac{4}{a}\ge2\sqrt{16a.\dfrac{4}{a}}=2\sqrt{16.4}=16\)

\(tương-tự\Rightarrow16b+\dfrac{4}{b}\ge16;16c+\dfrac{4}{c}\ge16\)

\(có:a+b+c\le\dfrac{3}{2}\Rightarrow15\left(a+b+c\right)\le\dfrac{45}{2}\)

\(\Rightarrow-15\left(a+b+c\right)\ge-\dfrac{45}{2}\)

\(\Rightarrow Q\ge\dfrac{1}{\sqrt{17}}\left(16+16+16-\dfrac{45}{2}\right)=\dfrac{3\sqrt{17}}{2}\)

\(dấu"="xayra\Leftrightarrow a=b=c=\dfrac{1}{2}\)

các bước ban đầu dùng bunhia chọn được 1+4^2 là do dự đoán được trước điểm rơi tại a=b=c=1/2 thôi bạn,cả bước tách dùng cosi cũng dự đoán dc điểm rơi =1/2 nên tách đc thôi

 

5 tháng 2 2022

Tại sao lại k được dùng nhỉ? Trông khi dùng thì bài toán sẽ dễ giải quyết hơn

 

Áp dụng Bunhiacopxki:

     \(\sqrt{\left(a^2+\dfrac{1}{b^2}\right)\left(\dfrac{1}{4}+4\right)}\ge\dfrac{a}{2}+\dfrac{2}{b}\)

     \(\Rightarrow\sqrt{a^2+\dfrac{1}{b^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{a}{2}+\dfrac{2}{b}\right)\)

Do đó:

     \(Q\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{a+b+c}{2}+2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\right]\)

Ta có:  \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)

     \(\Rightarrow Q\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{a+b+c}{2}+\dfrac{18}{a+b+c}\right]\)

 Áp dụng Cô-si:

      \(\dfrac{a+b+c}{2}+\dfrac{9}{8\left(a+b+c\right)}\ge\dfrac{3}{2}\)

Do đó:

     \(Q\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{3}{2}+\dfrac{135}{8\left(a+b+c\right)}\right]\ge\dfrac{2}{\sqrt{17}}\left[\dfrac{3}{2}+\dfrac{135}{8.\dfrac{3}{2}}\right]=\dfrac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)