K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Đặt P = 1/a³(b + c) + 1/b³(a + c) +1/c³(a + b) 

= bc/a²(b + c) + ac/b²(a + c) + ab/c²(a + b) ------- (do abc = 1) 

= 1 / a²[(1/c) + (1/b)] + 1 / b²[(1/c) + (1/a)] + 1 / c²[(1/b) + (1/a)] 

= (1/a²) / [(1/c) + (1/b)] + (1/b²) / [(1/c) + (1/a)] + (1/c²) / [(1/b) + (1/a)] 

Đặt 1/a = x, 1/b = y, 1/c = z thì xyz = 1 

Và khi đó: 

P = x²/(y + z) + y²/(z + x) + z²/(x + y) 

Sử dụng BĐT Cauchy: 

♠ x²/(y + z) + (y + z)/4 ≥ x 

♠ y²/(z + x) + (z + x)/4 ≥ y 

♠ z²/(x + y) + (x + y)/4 ≥ z 

Cộng vế 3 BĐT trên ta được 

P + (x + y + z)/2 ≥ x + y + z 

Hay: 

P ≥ (x + y + z)/2 

Lại theo Cauchy thì x + y + z ≥ 3.³√(xyz) = 3 

Nên P ≥ 3/2 (và ta được đpcm)   

1 tháng 10 2017

https://olm.vn/hoi-dap/question/1036432.html

vào đây xem nhé,cách ngắn hơn

24 tháng 10 2020

Giúp mình với các bạn ơiii

24 tháng 10 2020

Theo bất đẳng thức AM - GM, ta có: \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1+b\right)\left(1+c\right)}.\frac{1+b}{8}.\frac{1+c}{8}}=\frac{3}{4}a\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{4}-\frac{b+c}{8}-\frac{1}{4}\)Tương tự, ta được: \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{3b}{4}-\frac{c+a}{8}-\frac{1}{4}\)\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3c}{4}-\frac{a+b}{8}-\frac{1}{4}\)

Cộng vế theo vế ba bất đẳng thức trên, ta được: \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{4}\)Đẳng thức xảy ra khi a = b = c = 1

2 tháng 7 2020

Bạn tham khảo tại đây:

Câu hỏi của Trần Hữu Ngọc Minh - Toán lớp 9 - Học toán với OnlineMath

2 tháng 7 2020

Áp dụng BĐT Cosi ta được:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)64}}=\frac{3a}{4}̸\)

Tương tự \(\hept{\begin{cases}\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{1+a}{8}+\frac{1+c}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)

Cộng theo từng vế BĐT trên ta có:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{a+b+c}{2}\)

Vì \(a+b+c\ge3\sqrt[3]{abc}=3\)do đó:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c

16 tháng 7 2017

Bạn xem lời giải ở đây nhé https://olm.vn/hoi-dap/question/960694.html

16 tháng 7 2017

Another way CLICK HERE

10 tháng 5 2021

Áp dụng bất đẳng thức AM-GM cho 3 số :

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge3\sqrt[3]{\frac{a^3\left(b+1\right)\left(c+1\right)}{\left(b+1\right)\left(c+1\right)8^2}}=\frac{3a}{4}\)

Tương tự ta có \(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c+1}{8}+\frac{a+1}{8}\ge\frac{3b}{4}\)

\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge\frac{3c}{4}\)

Cộng theo vế các bđt trên ta được : 

\(VT+2\left(\frac{a}{8}+\frac{b}{8}+\frac{c}{8}+\frac{3}{8}\right)\ge\frac{3}{4}\left(a+b+c\right)\)

\(< =>VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{6}{8}\)

\(=\frac{1}{2}\left(a+b+c\right)-\frac{6}{8}\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{6}{8}=\frac{12-6}{8}=\frac{6}{8}=\frac{3}{4}\)

Dấu "=" xảy ra \(< =>a=b=c=1\)

Done !

28 tháng 3 2020

Ta có:

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{a\left(a+1\right)}{8}+\frac{a\left(b+1\right)}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)

\(\Rightarrow LHS+\frac{a^2+b^2+c^2+ab+bc+ca+2\left(a+b+c\right)}{8}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow LHS\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)

\(\ge\frac{a+b+c}{2}-\frac{a^2+b^2+c^2}{4}\)

Có ý tưởng đến đây thôi nhưng lại bị ngược dấu rồi :(

29 tháng 3 2020

BĐT <=> \(\frac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)

<=> \(\frac{ab+bc+ac+a+b+c}{abc+1+ab+bc+ac+a+c+b}\ge\frac{3}{4}\)

<=> \(4\left(ab+bc+ac+a+b+c\right)\ge3\left(ab+bc+ac+a+b+c+2\right)\)

<=> \(ab+bc+ac+a+b+c\ge6\)(1)

(1) luôn đúng do \(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3;a+b+c\ge3\sqrt[3]{abc}=3\)

=> BĐT được CM

Dấu bằng xảy ra khi \(a=b=c=1\)

28 tháng 3 2020

Biến đổi tương đương ta có : 

\(\frac{a}{\left(a+1\right).\left(b+1\right)}+\frac{b}{\left(b+1\right).\left(c+1\right)}+\frac{c}{\left(c+1\right).\left(a+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow4.a.\left(c+1\right)+4.b.\left(a+1\right)+4.c.\left(b+1\right)\ge3.\left(a+1\right).\left(b+1\right).\left(c+1\right)\)

\(\Leftrightarrow4.\left(a+b+c\right)+4.\left(ab+bc+ac\right)\ge3.a.b.c+3.\left(a+b+c\right)+3.\left(ab+bc+ca\right)+3\)

\(\Leftrightarrow a+b+c+ab+bc+ca\ge6\)

Sử dụng thêm bất đẳng thức Cauchy 3 số ta có : 

a+b+c \(\ge\)3.\(\sqrt[3]{abc}\)và ab + bc + ca \(\ge3.\sqrt[3]{a^2b^2c^2}=3\)

Vậy bất đẳng thức đã được chứng minh . Dấu bằng xảy ra khi và chỉ khi a= b= c =1

31 tháng 3 2020

Mình áp dụng BĐT AM-GM  đến dòng 

\(\Leftrightarrow ab+bc+ca+a+b\ge6\left(1\right)\)

Áp dụng BĐT AM-GM cho 3 số dương ta được

\(ab+bc+ca\ge3\sqrt[2]{\left(abc\right)^2}=3;a+b+c\ge3\sqrt[2]{abc}=3\)

Cộng từng vế  BĐT ta được (1). Do vậy BĐT ban đầu được chứng minh

Dấu "=" xảy ra <=> a=b=c=1

29 tháng 3 2020

Biến đối tương đương ta có:

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow4a\left(c+1\right)+4b\left(a+1\right)+4c\left(b+1\right)\ge3\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow4\left(a+b+c\right)+4\left(ab+bc+ca\right)\ge3abc+3\left(a+b+c\right)+3\left(ab+bc+ca\right)+3\)

\(\Leftrightarrow a+b+c+ab+bc+ca\ge6\)

Sử dụng thêm BĐT Cauchy 3 số ta có:

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}=3\\ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}=3\end{cases}}\)

Vậy BĐT đã được chứng minh. Dấu "=" <=> a=b=c=1