K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{3}>\frac{m}{n}\Rightarrow3>\frac{m^2}{n^2}\Rightarrow3n^2>m^2\Rightarrow3n^2\ge m^2+1\)

với 3n2=m2+1=>m2+1 chia hết cho 3

=>m2 chia 3 dư 2(vô lí)

\(\Rightarrow3n^2\ge m^2+2\)

lại có:\(\left(m+\frac{1}{2m}\right)^2=m^2+1+\frac{1}{4m^2}< m^2+2\)

\(\Rightarrow\left(m+\frac{1}{2m}\right)^2< 3n^2\Rightarrow m+\frac{1}{2m}< \sqrt{3}n\)

\(\Rightarrow\frac{m}{n}+\frac{1}{2mn}< \sqrt{3}\left(Q.E.D\right)\)

NV
5 tháng 5 2020

\(VT=\frac{4}{2.2\sqrt{a+b}}+\frac{4}{2.2\sqrt{b+c}}+\frac{4}{2.2\sqrt{c+a}}\)

\(VT\ge\frac{4}{a+b+4}+\frac{4}{b+c+4}+\frac{4}{c+a+4}\)

\(VT\ge\frac{36}{a+b+4+b+c+4+c+a+4}=\frac{36}{24}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

mik thấy có gì đó sai sai \"leu\"

\n
AH
Akai Haruma
Giáo viên
12 tháng 6 2020

Lời giải:

Áp dụng hệ quả quen thuộc của BĐT AM-GM ta có:

$3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3$. Do đó:

\(\text{VT}\leq \frac{a}{\sqrt{a^2+ab+bc+ac}}+\frac{b}{\sqrt{b^2+ab+bc+ac}}+\frac{c}{\sqrt{c^2+ab+bc+ac}}\)

\(=\frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)

\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

(theo BĐT AM-GM)

Do đó ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
13 tháng 6 2020

Giải theo pp UCT:

Áp dụng BĐT Bunhiacopxky:

$(a^2+3)(1+3)\geq (a+3)^2\Rightarrow \sqrt{a^2+3}\geq \frac{a+3}{2}$

$\Rightarrow \frac{a}{\sqrt{a^2+3}}\leq \frac{2a}{a+3}$

Ta sẽ chứng minh:

$\frac{a}{a+3}\leq \frac{1}{4}+\frac{3}{16}(a-1)$

$\Leftrightarrow \frac{3}{4}(a-1)^2\geq 0$ (luôn đúng với mọi $a>0$)

Do đó: $\frac{a}{\sqrt{a^2+3}}\leq \frac{1}{2}+\frac{3}{8}(a-1)$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a}{\sqrt{a^2+3}}\leq \sum [\frac{1}{2}+\frac{3}{8}(a-1)]=\frac{3}{2}+\frac{3}{8}(a+b+c-3)=\frac{3}{2}\)

5 tháng 9 2020

Ta có: \(\sqrt{6}-\frac{m}{n}>0\Leftrightarrow\sqrt{6}n-m>0\Leftrightarrow6n^2>m^2\Leftrightarrow6n^2\ge m^2+1\) (Do m, n là các số tự nhiên).

Mặt khác \(m^2+1\equiv1;2\left(mod3\right)\Rightarrow m^2+1⋮̸3\).

\(6n^2⋮3\) nên \(6n^2\ge m^2+1\).

Bất đẳng thức cần chứng minh tương đương với:

\(\sqrt{6}n>\frac{1}{2m}+m\Leftrightarrow6n^2>\left(\frac{1}{2m}+m\right)^2\).

Ta chỉ cần chứng minh:

\(\left(\frac{1}{2m}+m\right)^2< m^2+2\Leftrightarrow\frac{1}{4m^2}< 1\Leftrightarrow4m^2>1\) (luôn đúng với mọi m \(\in\) N*).

Vậy ta có đpcm.

5 tháng 9 2020

Dòng thứ 4 là \(6n^2\ge m^2+2\) chứ không phải là \(6n^2\ge m^2+1\). Mình ghi nhầm :(

NV
7 tháng 4 2019

\(VT=\sum\frac{x}{\sqrt{1+x^2}}=\sum\frac{x}{\sqrt{xy+xz+yz+x^2}}=\sum\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}\sum\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)\(\Rightarrow VT\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

NV
25 tháng 11 2019

a/ Nhân cả tử và mẫu của từng phân số với liên hợp của nó và rút gọn:

\(VT=\sqrt{a+3}-\sqrt{a+2}+\sqrt{a+2}-\sqrt{a+1}+\sqrt{a+1}-\sqrt{a}\)

\(=\sqrt{a+3}-\sqrt{a}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)

b/ \(VT=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)

\(=\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)

\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (1)

Mặt khác ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)

Thật vậy, \(\left(x+y+z\right)\left(xy+yz+zx\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)

\(xyz\le\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\) (theo AM-GM)

\(\Rightarrow\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)

Thay vào (1) \(\Rightarrow VT\le\frac{2\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

25 tháng 11 2019

Căn bậc hai. Căn bậc ba

17 tháng 1 2017

\(\Sigma\frac{b+1}{8-\sqrt{a}}\le\Sigma\frac{2\left(b+1\right)}{15-a}=\Sigma\frac{2\left(a+2b+c\right)}{4a+5b+5c}\)(AM-gm)

Đặt \(\left\{\begin{matrix}x=4a+5b+5c\\y=4b+5a+5c\\z=4c+5a+5b\end{matrix}\right.\)suy ra...

19 tháng 1 2017

tiếp đi?

AH
Akai Haruma
Giáo viên
25 tháng 1 2017

Mình đã giải tại đây https://hoc24.vn/hoi-dap/question/169464.html