K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

Ta có : \(\frac{a^3}{1+b}+\frac{1+b}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{a^3\left(1+b\right)}{8\left(1+b\right)}}=\frac{3}{2}a\)

\(\frac{b^3}{1+a}+\frac{1+a}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{b^3}{1+a}.\frac{1+a}{4}.\frac{1}{2}}=\frac{3}{2}b\)

Cộng các vế tương ứng lại ta được :

\(\frac{a^3}{1+b}+\frac{b^3}{1+a}+\frac{1}{4}\left(a+b\right)+\frac{3}{2}\ge\frac{3}{2}\left(a+b\right)\)

\(\Leftrightarrow\frac{a^3}{1+b}+\frac{b^3}{1+a}\ge\frac{5}{4}\left(a+b\right)-\frac{3}{2}\ge\frac{5}{4}.2\sqrt{ab}-\frac{3}{2}=1\)

Do đó \(P\ge1\)

Dấu \("="\) xảy ra \(\Leftrightarrow a=b=1\)

a) a = 2 , b = 3, c = 6

21 tháng 7 2017

\(\frac{1.bc}{abc}+\frac{1.ac}{abc}+\frac{1.ab}{abc}=1\)

\(bc+ac+ab=abc\)

phần sau bạn làm nốt nhé 

31 tháng 8 2020

Xét bđt sau :\(\left(a+b^3\right)\left(m+n\right)\ge\left(\sqrt{am}+\sqrt{b^3n}\right)^2\)(đúng theo bunhia nhé)

Chon \(m=a;n=\frac{1}{b}\)khi đó :

\(\left(a+b^3\right)\left(\frac{1}{a}+b\right)\ge\left(\sqrt{a.a}+\sqrt{b^3.\frac{1}{b}}\right)^2\)

\(< =>\left(a+b^3\right)\left(\frac{1}{a}+b\right)\ge\left(a+b\right)^2\)

\(< =>a+b^3\ge\frac{\left(a+b\right)^2}{\frac{1}{a}+b}=\frac{a\left(a+b\right)^2}{1+ab}\)

Suy ra \(\frac{1}{a+b^3}\le\frac{1+ab}{a\left(a+b\right)^2}\)(*)

Bằng cách chứng minh tương tự ta được :\(\frac{1}{a^3+b}\le\frac{1+ab}{b\left(a+b\right)^2}\)(**)

Từ (*) và (**) suy ra : \(\frac{1}{a+b^3}+\frac{1}{a^3+b}\le\frac{1+ab}{a\left(a+b\right)^2}+\frac{1+ab}{b\left(a+b\right)^2}\)

\(=\frac{1}{\left(a+b\right)^2}\left(\frac{1+ab}{a}+\frac{1+ab}{b}\right)=\frac{1}{\left(a+b\right)^2}\left(\frac{1}{a}+a+\frac{1}{b}+b\right)\)

\(=\frac{\frac{1}{a}+\frac{1}{b}+a+b}{\left(a+b\right)^2}=\frac{\frac{1}{a}+\frac{1}{b}}{\left(a+b\right)^2}+\frac{1}{a+b}=\frac{\frac{a+b}{ab}}{\left(a+b\right)^2}+\frac{1}{a+b}=\frac{1}{ab\left(a+b\right)}+\frac{1}{a+b}\)

Khi đó bài toán trở thành tìm GTLN của biểu thức :

\(A\le S=\left(a+b\right)\left(\frac{1}{ab\left(a+b\right)}+\frac{1}{a+b}\right)-\frac{1}{ab}=\frac{a+b}{ab\left(a+b\right)}+\frac{a+b}{a+b}-\frac{1}{ab}\)

\(=\frac{1}{ab}+1-\frac{1}{ab}=1\)

Vậy \(A_{max}=1\)đạt được khi ...

chuyên KHTN 2017 ?

3 tháng 8 2020

Ta có : \(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P=\frac{1}{\left(a+b\right)^3}\left(\frac{a^3+b^3}{a^3b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{a^2+b^2}{a^2b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{a+b}{ab}\right)\)

=> \(P=\frac{1}{\left(a+b\right)^3}\left(\frac{a^3+b^3}{1}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{a^2+b^2}{1}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{a+b}{1}\right)\)

=> \(P=\frac{a^3+b^3}{\left(a+b\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}\)

=> \(P=\frac{\left(a+b\right)\left(a^2+ab+b^2\right)}{\left(a+b\right)^3}+\frac{3\left(a^2+b^2+2a\right)-6a}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}\)

=> \(P=\frac{\left(a+b\right)\left(a^2+ab+b^2\right)}{\left(a+b\right)^3}+\frac{3\left(a+b\right)^2}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}-\frac{6}{\left(a+b\right)^4}\)

=> \(P=\frac{a^2+ab+b^2}{\left(a+b\right)^2}+\frac{3}{\left(a+b\right)^2}+\frac{6}{\left(a+b\right)^4}-\frac{6}{\left(a+b\right)^4}\)

=> \(P=\frac{a^2+ab+b^2}{\left(a+b\right)^2}+\frac{3}{\left(a+b\right)^2}=\frac{2a^2+4ab+2b^2}{\left(a+b\right)^2}-\frac{a^2+b^2}{\left(a+b\right)^2}\)

=> \(P=2-\frac{a^2+b^2}{\left(a+b\right)^2}=1+\frac{-2}{\left(a+b\right)^2}\)