K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

Sửa đề: Cho \(a,b,c>0\) và \(abc=1\). Chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge a+b+c\)

Cách 1: Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2c+b^2a+c^2b}{abc}\ge\frac{\frac{\left(ab+bc+ca\right)^2}{a+b+c}}{abc}\ge a+b+c\)

Cách 2: Áp dụng BĐT AM-GM ta có:

\(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}\ge3a\)

Tương tự ta cũng có \(\frac{2b}{c}+\frac{c}{a}\ge3b;\frac{2c}{a}+\frac{a}{b}\ge3c\)

Cộng theo vế và rút gọn ta có ĐPCM

Cách 3: Đặt \(x=\sqrt[9]{\frac{ab^4}{c^2}};y=\sqrt[9]{\frac{ca^4}{b^2}};z=\sqrt[9]{\frac{bc^4}{a^2}}\)

\(\Rightarrow a=xy^2;b=xz^2;c=yz^2\forall xyz\le1\)

Áp dụng BĐT Rearrangement ta có:

\(Σ\frac{a}{b}=Σ\frac{x^2}{yz}\ge xyzΣ\frac{x^2}{yz}=Σx^3\geΣxy^2=Σa\)

14 tháng 4 2018

đề sai ak

19 tháng 11 2018

thay 1=(abc)^2

2 tháng 2 2020

Nhìn sơ qua hình như bài có thiếu đk gì đó...

15 tháng 10 2017

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

15 tháng 10 2017

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

NV
12 tháng 11 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\)

Ta cần chứng minh \(\frac{3}{\sqrt[3]{abc}}\ge\frac{9}{abc+2}\Leftrightarrow abc+2\ge3\sqrt[3]{abc}\)

BĐT trên luôn đúng theo AM-GM vì: \(abc+2=abc+1+1\ge3\sqrt[3]{abc}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

8 tháng 1 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{6}=\frac{3}{2}\)

\(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\ge\frac{9}{ab+bc+ca}\ge\frac{27}{\left(a+b+c\right)^2}=\frac{27}{36}=\frac{3}{4}\)

\(\frac{1}{abc}\ge\frac{1}{\left(\frac{a+b+c}{3}\right)^3}=\frac{27}{\left(a+b+c\right)^3}\ge\frac{27}{6^3}=\frac{1}{8}\)

Cộng lại ta được:

\(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge\frac{27}{8}\left(đpcm\right)\)

Dấu "=" xảy ra tại \(a=b=c=2\)

NV
6 tháng 5 2021

Ta chứng minh BĐT sau với các số dương:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)

Cộng vế với vế:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

NV
6 tháng 5 2021

b.

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)

Cộng vế với vế (1); (2) và (3):

\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)