K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2015

Đặt T = 12 + 22 + ... + 102 = 385

=> T x 22 = 12. 22 + 22. 22 + ... + 102.22 = 385. 22

=> T x 22 = (1.2)2 + (2. 2)2 + ... + (10.2)2 = 385. 22 

=> T x 22 = (2)2 + (4)2 + ... + (20)2 = 385. 22 

=> T x 22 = S = 385. 22 

=> S = 385 x 4

Trong câu hỏi tương tự ấy giáo viên olm giải rồi

2 tháng 7 2017

ngu là ngu

16 tháng 7 2018

S = 22 + 42 + 62 + ... + 202

   = (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2

   = 22.12 + 22.22 + 22.32 + ... + 22.102

   = 22 (12 + 22 + ... + 102 )

   = 4 . 385 = 1540

16 tháng 9 2017

Ta có : \(1^2+2^2+3^2+.....+10^2=385\)

\(\Leftrightarrow2^2\left(1^2+2^2+3^2+.....+10^2\right)=2^2.385\)

\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=4.385\)

\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=1540\)

16 tháng 9 2017

Sửa đề: CHo 12+22+...+102=385. Tính S = 22+42 +...+ 202

S = 22 + 42 +...+ 202

= (1.2)2 + (2.2)2 +...+ (2.10)2

= 12.22 + 22.22 +...+ 22.102

= 22(12 + 22 +...+ 102)

= 4.385

= 1540

11 tháng 3 2021

Ta có \(2^2+4^2+...+20^2=2^2\left(1^2+2^2+...+10^2\right)=2^2.385=1540\).

11 tháng 6 2017

2 tháng 8 2021

A. 1155 nha bạn 

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Lời giải:

\(B=(1.2)^2+(2.2)^2+(3.2)^2+...+(10.2)^2\)

\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2=2^2(1^2+2^2+...+10^2)\)

\(=4A=4.385=1540\)

26 tháng 1 2018

Ta có 12 + 22 + 32 + …102 = 385

Suy ra ( 12 +22 + 32 +…+102 ) .32 = 385.32

Do đó ta tính được A = 32 + 62 + 92 + …+302  = 3465

28 tháng 1 2016

Đạt A=2^2+4^2+6^2+...+20^2

      A=2^2X(1^2+2^2+3^2+...+10^2) (1)

Mà 1^2+2^2+3^2+...+10^2=385(2)

Thay (2) vào (1), có: A=2^2x385

                              A=4X385=1540

Vậy 2^2+4^2+6^2+...+20^2 = 1540

Chọn B

27 tháng 6 2018

= 50

Nho t ick nha

27 tháng 6 2018

     \(\left(102+82+62+42+22\right)-\left(12+32+53+72+92\right)\)

\(=102+82+62+42+22-12-32-52-72-92\)

\(=\left(102-92\right)+\left(82-72\right)+\left(62-52\right)+\left(42-32\right)+\left(22-12\right)\)

\(=10+10+10+10+10\)

\(=10.5\)

\(=50\)

14 tháng 1 2021

\(F=2^2+4^2+...+20^2\)

\(=\left(1.2\right)^2+\left(2.2\right)^2+...+\left(2.10\right)^2\)

\(=1.2^2+2^2.2^2+...2^2.10^2\)

\(=2^2\left(1+2^2+...+10^2\right)\)

\(=2^2.385\)

\(=4.385\)

\(=1540\)