K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

ta co : a+b+c=bc+ac+ab/abc

                    =a+b+c=bc+ac+ab     (vi abc=1)

    ta co : (a-1).(b-1).(c-1)

              =(ab-a-b+1).(c-1)

               =abc-ab-ac+a-bc+b+c-1

              =(abc-1)+(a+b+c)-(ab+ac+bc)

              =(1-1)+(bc+ac+ab)-(ab+ac+bc)

              =0

do (a-1).(b-1).(c-1)=0            (cmt)

=>a=b=c=1   

thay vao p

=>p=(1^19-1).(1^5-1).(1^1890-1)

      =(1-1).(1-1).(1-1)

       0

Tớ nhầm a,b,c với x,y,z nhe

thông cảm bệnh nghề nghiệp

p=0 là đúng đấy 

nhớ cho tớ nhé 

hí hí hí hí hí ................

27 tháng 4 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}\)\(=\frac{-\left(x+y+z\right)}{x+y+z}\)

Nếu   \(x+y+z=0\)thì   \(\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)

\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}\)

\(=\frac{-z}{x}.\frac{-x}{y}.\frac{-y}{z}=-1\)

Nếu  \(x+y+z\ne0\)thì   \(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=-1\)

suy ra:   \(\frac{x-y-z}{x}=-1\)            \(\Rightarrow\)       \(x-y-z=-x\)          \(\Rightarrow\)     \(y+z=2x\)

             \(\frac{-x+y-z}{y}=-1\)                     \(-x+y-z=-y\)                         \(x+z=2y\)

             \(\frac{-x-y+z}{z}=-1\)                    \(-x-y+z=-z\)                         \(x+y=2z\)

\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)

\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{x+z}{z}\)

\(=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=8\)

1 tháng 12 2019

Ta có:

\(x^2+y^2\ge2xy\Rightarrow x^2+y^2-xy\ge xy\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2-xy\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow\frac{1}{x^3+y^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}=\frac{1}{x+y+z}.\frac{1}{xy}\)

Tương tự: \(\frac{1}{y^3+z^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{yz}\) ;\(\frac{1}{z^3+x^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{zx}\)

\(\Rightarrow\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{z^3+x^3+xyz}\)

\(\le\frac{1}{x+y+z}.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{x+y+z}{\left(x+y+z\right)xyz}=\frac{1}{xyz}\)

Dấu \(=\) xảy ra \(\Leftrightarrow x=y=z>0\)

1 tháng 12 2019

AD BĐT X^3+Y^3>=XY(X+Y) LÀ RA

1 tháng 12 2019

Có BĐT phụ:

\(a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Áp dụng

\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\)

\(\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{zx\left(z+x\right)+xyz}\)

\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\)

\(=\frac{1}{xyz}\)

3 tháng 11 2018

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\) Do \(xyz=1\Rightarrow abc=1\)

Ta có \(M=\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{a^3+c^3+1}\)

Cần chứng minh \(a^3+b^3\ge ab\left(a+b\right)\) \(BĐT\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\left(true\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+1}=\frac{abc}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)

Tương tự cộng lại ra ĐPCM

13 tháng 1 2021

Ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)\)

\(\left(\sqrt{3}\right)^2=P+\frac{2\left(z+y+x\right)}{xyz}\) 

Mà x+y+z=xyz

=> P+2=3=>P=1

Vậy P=1

25 tháng 2 2017

Áp dụng liên tiếp bđt AM-GM cho 2 số dương ta có:

A = \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\)\(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=\left(xy+\frac{y}{x}\right)+\left(yz+\frac{z}{y}\right)+\)\(\left(xz+\frac{x}{z}\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(\ge2\sqrt{xy.\frac{y}{x}}+2\sqrt{yz.\frac{z}{y}}+2\sqrt{xz.\frac{x}{z}}+\)\(+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(A\ge2y+2z+2x+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(=x+y+z+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)

\(A\ge x+y+z+2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+\)\(2\sqrt{z.\frac{1}{z}}=x+y+z+2.3=x+y+z+6\)(đpcm)

Dấu "=" xảy ra khi x = y = z = 1

15 tháng 7 2017

từ \(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

\(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\)\(\Rightarrow ab+bc+ca=1\)

Thay vào \(\sqrt{x^2+1}\) r` phân tích nhân tử áp dụng C-S là ra :3

2 tháng 4 2017

sửa đề: x+y+z= \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)nha