K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)

Ta có : \(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}=4\)

\(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}=2\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{a^2+b^2}\ge4+2=6\)

16 tháng 12 2018

\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}\)

\(\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}+\frac{4}{\left(a+b\right)^2}=\frac{2}{1}+\frac{4}{1}=6\)

10 tháng 12 2016

Không mất tính tổng quát ta giả sử: \(a\ge b\)

Nếu \(a\ge b>\frac{1}{2}\Rightarrow a^2\ge b^2>\frac{1}{4}\Rightarrow a^2+b^2>\frac{1}{2}\)(loại)

Nếu \(\frac{1}{2}>a\ge b\Rightarrow\frac{1}{4}>a^2\ge b^2\Rightarrow a^2+b^2< \frac{1}{2}\)(loại)

Vậy chỉ còn trường hợp: \(a\ge\frac{1}{2}\ge b\)

\(\Rightarrow\hept{\begin{cases}a-\frac{1}{2}\ge0\\b-\frac{1}{2}\le0\end{cases}}\)

Nhân vế theo vế ta được

\(\left(a-\frac{1}{2}\right)\left(b-\frac{1}{2}\right)\le0\)

\(\Leftrightarrow ab-\frac{a+b}{2}+\frac{1}{4}\le0\)

\(\Leftrightarrow a+b\ge2ab+\frac{1}{2}\)

Từ bài toán ta có

\(\frac{1}{1-2ab}+\frac{1}{a}+\frac{1}{b}=\frac{1}{1-2ab}+\frac{a+b}{ab}\)

\(\ge\frac{1}{1-2ab}+\frac{2ab+\frac{1}{2}}{ab}=\frac{1}{1-2ab}+\frac{1}{2ab}+2\)

\(\ge\frac{\left(1+1\right)^2}{1-2ab+2ab}+2=4+2=6\)

Dấu = xảy ra khi \(a=b=\frac{1}{2}\)

9 tháng 12 2016

ket qua la 213/4

25 tháng 9 2020

Áp dụng bđt ngược chiều là ra

\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{2ab+a^2+b^2}+\frac{1}{2\left(\frac{a+b}{2}\right)^2}=\frac{4}{\left(a+b\right)^2}+2=6\)

25 tháng 9 2020

hmm... nếu mà xét dấu bằng thì tại a=b=1/2

23 tháng 3 2019

\(VT=\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)+\frac{1}{2ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{2ab}=4+\frac{1}{2ab}\)

Ta có: \(\frac{\left(a+b\right)^2}{4}\ge ab\Rightarrow\frac{\left(a+b\right)^2}{2}\ge2ab\) (BĐT AM-GM or CÔ si gì đó)

\(VT\ge4+\frac{1}{\frac{\left(a+b\right)^2}{2}}=4+2=6^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a^2+b^2=2ab\\a+b=1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\a+b=1\end{cases}}\Leftrightarrow}\hept{\begin{cases}a=b\\a+b=1\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)

15 tháng 10 2017

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

15 tháng 10 2017

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

9 tháng 10 2015

câu a)

đặt A= vế trái

=>A=1/2ab+1/2ab+1/(a2+b2) (3)

(a+b)2>=4ab (tự cm)

=>1>=4ab

hay 4ab <=1

=>2ab<=1/2

=>1/2ab>=2  (1) 

sau đó áp dụng BĐT:1/x+1/y >= 4/(x+y) ta đc :

1/2ab+1/(a2+b2) >= 4/(a+b)2=4/1=4  (2)

từ (1),(2),(3)=>dpcm