K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2021

Trả lời:

Ta có: (x+y+z)(xy+yz+zx)=xyz

=>(x+y+z)(xy+yz+zx)-xyz=0

=> (x+y)(y+z)(z+x)=0

=> x=-y (1)

     y=-z (2)

     z= -x

ta có: x2019+y2019+z2019=x2019+(-z)2019+z2019=x2019 = (x-z+z)2019= (x+y+z)2019

Vậy kết luận, khi (x+y+z)(xy+yz+zx)=xyz thì  x2019+y2019+z2019=(x+y+z)2019 

19 tháng 9 2019

Bổ đề: xyz+(x+y)(y+z)(z+x)=(x+y+z)(xy+yz+zx)

Cm:

VT: xyz+(x+y)(y+z)(z+x)

=xyz+xyz+x2z+x2y+y2x+y2z+z2x+z2y+xyz

=xyz+x2z+x2y+xyz+y2z+y2x+xyz+z2x+z2y

=(x+y+z)(xy+yz+xz)

AD bổ đề và đề bài cho

=> (x+y)(y+z)(z+x)=0

\(\Rightarrow\left[{}\begin{matrix}x+y=0\\x+z=0\\y+z=0\end{matrix}\right.\)

1. x+y=0

ta có x2019+y2019=(x+y)(x2018-x2017y+...+y2018)=0

=> x2019+y2019+z2019=z2019

Có (x+y+z)2019=z2019

=> x2019+y2019+z2019= (x+y+z)2019

Làm tương tự với 2 trường hợp còn lại ta được đpcm

28 tháng 8 2019

\(y^2+2019=y^2+xy+yz+zx=y\left(x+y\right)+z\left(x+y\right)=\left(y+z\right)\left(x+y\right)\)

\(x^2+2019=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+z\right)\left(x+y\right)\)

\(z^2+2019=z^2+xy+yz+xz=z\left(z+y\right)+x\left(y+z\right)=\left(z+x\right)\left(y+z\right)\)

\(P=x\sqrt{\frac{\left(y^2+2019\right)\left(z^2+2019\right)}{x^2+2019}}+y\sqrt{\frac{\left(z^2+2019\right)\left(x^2+2019\right)}{y^2+2019}}+z\sqrt{\frac{\left(x^2+2019\right)\left(y^2+2019\right)}{z^2+2019}}\)

=\(x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(z+y\right)}{\left(x+z\right)\left(y+x\right)}}+y\sqrt{\frac{\left(z+x\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(y+z\right)\left(x+y\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)

=\(x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

=\(x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)

=\(x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\) (vì x,y,z >0)

= xy+xz+xy+yz+xz+yz

=2(xy+xz+yz)=2.2019(vì xy+xz+yz=2019)

=4038

Vậy P=4038

17 tháng 1 2017

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)

1 tháng 7 2020

Ta có: x2 + y2 + z2 = xy + yz + zx

<=> [(x - y)2 + (y - z)2 + (z - x)2] . 1/2 = 0

<=> x = y = z

Thay vào pt thứ 2...

8 tháng 2 2020

\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\left(1\right)\)

\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\Rightarrow x=y=z\)

Thay y, z bằng x \(\Rightarrow M=\frac{3.x^{2019}}{\left(3x\right)^{2019}}=\frac{3x^{2019}}{3^{2019}.x^{2019}}=\frac{1}{3^{2018}}\)

6 tháng 9 2018

Ta có :

\(VT=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)

\(=\left(xy+y^2+xz+yz\right)\left(z+x\right)+xyz\)

\(=xyz+y^2z+xz^2+yz^2+x^2y+y^2x+x^2z+xyz+xyz\)

\(=\left(x^2y+xyz+x^2z\right)+\left(y^2x+y^2z+xyz\right)+\left(xyz+z^2y+z^2x\right)\)\(=x\left(xy+yz+zx\right)+y\left(xy+yz+zx\right)+z\left(xy+yz+zx\right)\)

\(=\left(x+y+z\right)\left(xy+yz+zx\right)=VP\)

\(\left(đpcm\right)\)

:D

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Lời giải:

Từ điều kiện \(x+y+z+2=xyz\) ta có một đẳng thức rất đẹp là \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)

\(\Rightarrow \frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=2(*)\)

(lớp 9 mình đã rất sung sướng khi phát hiện ra nó, dù không mới mẻ. Tất nhiên không thể tự nhiên mà có được đẳng thức như thế này, nó tùy thuộc vào khả năng suy luận ngược hoặc thói quen biến đổi các đẳng thức cơ bản)

Khi đó, áp dụng BĐT Bunhiacopxky ta có:

\((x+1+y+1+z+1)\left(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\right)\geq (\sqrt{x}+\sqrt{y}+\sqrt{z})^2\)

\(\Leftrightarrow 2(x+y+z+3)\ge (\sqrt{x}+\sqrt{y}+\sqrt{z})^2\)

\(\Leftrightarrow x+y+z+6\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{xz})\)

Ta có đpcm.

Dấu "=" xảy ra khi \(x=y=z=2\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Lời giải:

Từ \(xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \((a,b,c)=\left(\frac{1}{x}; \frac{1}{y}; \frac{1}{z}\right)\Rightarrow a+b+c=1\)

BĐT cần chứng minh trở thành:

\(P=\frac{c^3}{(a+1)(b+1)}+\frac{a^3}{(b+1)(c+1)}+\frac{b^3}{(c+1)(a+1)}\geq \frac{1}{16}(*)\)

Thật vậy, áp dụng BĐT Cauchy ta có:

\(\frac{c^3}{(a+1)(b+1)}+\frac{a+1}{64}+\frac{b+1}{64}\geq 3\sqrt[3]{\frac{c^3}{64^2}}=\frac{3c}{16}\)

\(\frac{a^3}{(b+1)(c+1)}+\frac{b+1}{64}+\frac{c+1}{64}\geq 3\sqrt[3]{\frac{a^3}{64^2}}=\frac{3a}{16}\)

\(\frac{b^3}{(c+1)(a+1)}+\frac{c+1}{64}+\frac{a+1}{64}\geq 3\sqrt[3]{\frac{b^3}{64^2}}=\frac{3b}{16}\)

Cộng theo vế các BĐT trên và rút gọn :

\(\Rightarrow P+\frac{a+b+c+3}{32}\geq \frac{3(a+b+c)}{16}\)

\(\Leftrightarrow P+\frac{4}{32}\geq \frac{3}{16}\Leftrightarrow P\geq \frac{1}{16}\)

Vậy \((*)\) được chứng minh. Bài toán hoàn tất.

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=3\)