K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

Ta có : \(\frac{a-\left(c-b\right)}{b-c}+\frac{b-\left(a-c\right)}{c-a}+\frac{c-\left(b-a\right)}{a-b}=3\)

\(\Leftrightarrow\frac{a+\left(b-c\right)}{b-c}-1+\frac{b+\left(c-a\right)}{c-a}-1+\frac{c+\left(a-b\right)}{a-b}-1=0\)

\(\Leftrightarrow\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{a+c}{\left(b-c\right)\left(a-b\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a^2-b^2+c^2-a^2+b^2-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

13 tháng 7 2016

Từ gt ta có : \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)0

Từ đó suy ra điều phải chứng minh

19 tháng 8 2017

Ta có: 

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{c-a}+\frac{1}{a-b}\)

Tương tự:

 \(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b}{\left(b-c\right)\left(b-a\right)}+\frac{b-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)

Và: \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c}{\left(c-a\right)\left(c-b\right)}+\frac{c-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)

=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)

=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

=> đpcm

1 tháng 12 2018

bo ko biet

25 tháng 3 2020

Ta có : \(\frac{b-c}{\left(a-b\right)\left(a+c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{-\left(a-b\right)+\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{-\left(b-c\right)+\left(b-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{-\left(c-a\right)+\left(c-b\right)}{\left(c-a\right)\left(c-b\right)}\)

\(=-\frac{1}{a-c}+\frac{1}{a-b}+\frac{-1}{b-a}+\frac{1}{b-c}+\frac{-1}{c-b}+\frac{1}{c-a}\)

\(=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

19 tháng 8 2017

\(VT=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{-1}{a-c}+\frac{1}{a-b}+\frac{-1}{b-a}+\frac{1}{b-c}+\frac{-1}{c-b}+\frac{1}{c-a}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}=VP\)

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

1 tháng 4 2019

Ta có:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{a-c}{\left(a-b\right)\left(a-c\right)}-\frac{a-b}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}=\frac{1}{a-b}+\frac{1}{c-a}\left(1\right)\)Chứng minh tương tự,ta có:\(\hept{\begin{cases}\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\left(2\right)\\\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\left(3\right)\end{cases}}\)

Từ (1);(2);(3) suy ra:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^{đpcm}\)

18 tháng 7 2016

Ta có ; \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}=\frac{1}{a-b}+\frac{1}{c-a}\)

\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}=\frac{1}{b-c}+\frac{1}{a-b}\)

\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}=\frac{1}{c-a}+\frac{1}{b-c}\)

Cộng các vế lại với nhau được điều phải chứng minh.

18 tháng 7 2016

A , B , C khác nhau thì bạn làm sao có thể cho : A-C = B đc ?
 

14 tháng 11 2019

Ta có

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\left(1\right)\)

Tương tự ta có

\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\left(2\right)\)

\(\frac{a-b}{\left(c-b\right)\left(c-a\right)}=\frac{1}{b-c}+\frac{1}{c-a}\left(3\right)\)

Từ (1) (2) và (3) ta có

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\left(đpcm\right)\)

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{c-b}{\left(a-b\right)\left(c-a\right)}=\frac{\left(c-a\right)+\left(a-b\right)}{\left(a-b\right)\left(c-a\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)

Làm tương tự ta được:\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\)

                           \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\)

\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\left(ĐPCM\right)\)