K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

a) Do các tứ giác ABCD và ABEF là các hình bình hành

=> O là trung điểm của AC và BD

và O’ là trung điểm của AE và BF. (tính chất hình bình hành).

Giải bài tập Đại số 11 | Để học tốt Toán 11

+ ΔBFD có OO’ là đường trung bình nên OO’ // DF

mà DF ⊂ (ADF)

⇒ OO' // (ADF)

+ ΔAEC có OO’ là đường trung bình nên OO’ // EC

mà EC ⊂ (BCE)

⇒ OO’ // (BCE).

b)

Giải bài tập Đại số 11 | Để học tốt Toán 11

Ta thấy mp(CEF) chính là mp(CEFD).

Gọi I là trung điểm của AB:

+ M là trọng tâm ΔABD

⇒ IM/ ID = 1/3.

+ N là trọng tâm ΔABE

⇒ IN/IE = 1/3.

+ ΔIDE có IM/ID = IN/IE = 1/3

⇒ MN // DE mà ED ⊂ (CEFD)

nên MN // (CEFD) hay MN // (CEF).

31 tháng 3 2017

a) OO' là đường trung bình của tam giác DBF nên OO' // DF.
DF nằm trong mặt phẳng (ADF) nên OO' // mp(ADF).
Tương tự OO' // CE mà CE nằm trong mặt phẳng (BCE) nên OO' // mp(BCE).

b) Gọi J là trung điểm đoạn thẳng AB, theo định lí Ta-lét \(\Rightarrow\) MN // DE => đpcm.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Tham khảo hình vẽ:

a) \(O\) là trung điểm của \(B{\rm{D}}\) (theo tính chất hình bình hành)

\(O'\) là trung điểm của \(BF\) (theo tính chất hình bình hành)

\( \Rightarrow OO'\) là đường trung bình của tam giác \(B{\rm{D}}F\)

\(\left. \begin{array}{l} \Rightarrow OO'\parallel DF\\DF \subset \left( {C{\rm{DFE}}} \right)\end{array} \right\} \Rightarrow OO'\parallel \left( {C{\rm{DFE}}} \right)\)

Ta có:

\(\left. \begin{array}{l}OO'\parallel DF\\DF \subset \left( {A{\rm{DF}}} \right)\end{array} \right\} \Rightarrow OO'\parallel \left( {A{\rm{DF}}} \right)\)

\(O\) là trung điểm của \(AC\) (theo tính chất hình bình hành)

\(O'\) là trung điểm của \(A{\rm{E}}\) (theo tính chất hình bình hành)

\( \Rightarrow OO'\) là đường trung bình của tam giác \(AC{\rm{E}}\)

\(\left. \begin{array}{l} \Rightarrow OO'\parallel CE\\CE \subset \left( {BCE} \right)\end{array} \right\} \Rightarrow OO'\parallel \left( {BC{\rm{E}}} \right)\)

b) \(M\) là trung điểm của \(AF\) (theo tính chất hình bình hành)

\(N\) là trung điểm của \(BE\) (theo tính chất hình bình hành)

\( \Rightarrow MN\) là đường trung bình của hình bình hành \(ABEF\)

\(\left. \begin{array}{l} \Rightarrow MN\parallel EF\parallel AB\\EF \subset \left( {C{\rm{D}}F{\rm{E}}} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {C{\rm{D}}F{\rm{E}}} \right)\)

Ta có:

\(\left. \begin{array}{l}O \in \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right)\\MN\parallel AB\\MN \subset \left( {OMN} \right)\\AB \subset \left( {ABC{\rm{D}}} \right)\end{array} \right\}\)

\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {ABCD} \right)\) là đường thẳng \(d\) đi qua \(O\), song song với \(MN\) và \(AB\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


Gọi I,J lần lượt là trung điểm của BC, BF

Suy ra, IJ là đường trung bình của tam giác BCF.

Do đó, IJ // CF (1)

Tam giác AIJ có:  \(\frac{{AM}}{{AI}} =\frac{{AN}}{{AJ}}= \frac{2}{3}\)

Suy ra, MN // IJ (theo Ta lét) (2)

Từ (1) và (2) suy ra  MN // CF, mà CF nằm trong (ACF).

Suy ra MN // (ACF)

14 tháng 9 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có : OO′ // DF ( đường trung bình của tam giác BDF).

Vì DF ⊂ (ADF) ⇒ OO′ // (ADF).

Tương tự OO’ // EC (đường trung bình của tam giác AEC).

Vì EC ⊂ (BCE) nên OO′ // (BCE).

b) Gọi I là trung điểm AB;

Vì M là trọng tâm của tam giác ABD nên M ∈ DI

Vì N là trọng tâm của tam giác ABE nên N ∈ EI

Ta có :

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nên CD // EF và CD = EF, suy ra tứ giác CDFE là hình bình hành.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) Ta có: AD // BC (ABCD là hình bình hành) 

Mà AD thuộc (AFD), BC thuộc (BEC) 

Nên (AFD) // (BEC) 

b) Trong (ABEF) kẻ đường thẳng d qua M // AF

Ta có: d cắt AB tại I, d cắt EF tại J (1)

Trong (ABCD) có I thuộc (P) mà (P) // (AFD) 

Suy ra từ I kẻ IH // AD (2) 

(1)(2) suy ra (IJH) trùng (P) và // (AFD) 

Ta có: (P) cắt AC tại N mà AC thuộc (ABCD), IH thuộc (P) và (ABCD) 

Suy ra: IH cắt AC tại N

Ta có các hình bình hành IBCH, IBEJ

Gọi O là trung điểm của AB

Có M là trọng tâm △ABE

Suy ra: \(\dfrac{MO}{ME}=\dfrac{1}{2}\).

Ta có: AB // CD suy ra: AI // CH

Định lí Ta-lét: \(\dfrac{AN}{NC}=\dfrac{AI}{CH}\)

mà CH = IB (IBCH là hình bình hành)

Suy ra: \(\dfrac{AN}{NC}=\dfrac{AI}{IB}\)

Ta có: AB // EF nên OI // EJ

Do đó: \(\dfrac{OI}{EJ}=\dfrac{MO}{ME}=\dfrac{1}{2}\)

Mà EJ = IB (IBEJ là hình bình hành)

Suy ra: \(\dfrac{OI}{IB}=\dfrac{1}{2}\) hay IB = 2OI

Ta có: \(\dfrac{AN}{NC}=\dfrac{AI}{IB}=\dfrac{AO+OI}{2OI}\)

Mà OA = OB (O là trung điểm AB)

Nên \(\dfrac{AN}{NC}=2\).

12 tháng 1 2017

Đáp án D

Ta có: O là trung điểm của BD (hình bình hành ABCD tâm O)

⇒ B O B D = 1 2 (1)

Lại có: O’ là trung điểm của BF (hình bình hành ABEF tâm O’)

⇒ B O ' B F = 1 2 (2)

Từ (1) và (2) suy ra  B O B D = B O ' B F

Theo định lý Ta-lét trong tam giác BDF suy ra OO’ // DF

Mà DF ⊂  (ADF)

Do đó OO’ // (ADF).

25 tháng 11 2017

Đáp án C

+) Ta có: BC // AD; BE // AF (ABCD và ABEF là hình bình hành)

Suy ra BC // (ADF); BE // (ADF)

Mà BC ∩  BE = B

Do đó (ADF) // (BEC).

+) O và O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O và O’ là trung điểm của BF và BD

Xét tam giác ABF có MO’ là đường trung bình nên MO’ // AF

 MO’ // (ADF)  (1)

Tương tự MO là đường trung bình của tam giác ABD nên MO // AD

 MO // (ADF)  (2)

Từ (1) và (2) suy ra (MOO’) // (ADF)

+) Chứng minh tương tự ta cũng có (MOO’) // (BCE).

+) Hai mặt phẳng (AEC) và (BDF) có:

AC ∩  DB = O ; AE ∩  BF = O’

Suy ra (AEC) ∩  (BDF) = OO’.

Vậy khẳng định (I); (II); (III) đúng.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

\(\begin{array}{l}\left. \begin{array}{l}N{N_1}\parallel AB \Rightarrow \frac{{A{N_1}}}{{AF}} = \frac{{BN}}{{BF}} = \frac{1}{3}\\M{M_1}\parallel AB \Rightarrow \frac{{A{M_1}}}{{A{\rm{D}}}} = \frac{{IM}}{{I{\rm{D}}}} = \frac{1}{3}\end{array} \right\} \Rightarrow \frac{{A{N_1}}}{{AF}} = \frac{{A{M_1}}}{{A{\rm{D}}}}\\\left. \begin{array}{l} \Rightarrow {M_1}{N_1}\parallel DF\\DF \subset \left( {DEF} \right)\end{array} \right\} \Rightarrow {M_1}{N_1}\parallel \left( {DEF} \right)\end{array}\)

c) Ta có:

\(\left. \begin{array}{l}\left. \begin{array}{l}N{N_1}\parallel AB\parallel EF\\EF \subset \left( {DEF} \right)\end{array} \right\} \Rightarrow N{N_1}\parallel \left( {DEF} \right)\\{M_1}{N_1}\parallel \left( {DEF} \right)\\{M_1}{N_1},N{N_1} \subset \left( {MN{N_1}{M_1}} \right)\end{array} \right\} \Rightarrow \left( {MN{N_1}{M_1}} \right)\parallel \left( {DEF} \right)\)