Cho :\(b^2=ac.CMR:\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:
b^2=ac \(\Rightarrow\) \(\frac{a}{b}\)=\(\frac{b}{c}\)\(\Rightarrow\) \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{ab}{bc}=\frac{a}{c}\)(1)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{a}{c}=\frac{a+b}{b+c}\)
\(\Rightarrow\)\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)(2)
Từ (1) và (2)\(\Rightarrow\)đpcm

Có \(b^2=ac\)
Có \(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\left(đpcm\right)\)
Ta có:\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
=>ĐPCM

\(b^2=ac\Leftrightarrow\frac{a}{b}=\frac{b}{c}=k\Leftrightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}=k^2\)
mà a =bk ; b = ck => a =c k2 => k2 =a/c
=>\(\frac{a^2+b^2}{b^2+c^2}=k^2=\frac{a}{c}\)


b^2=ac
=>b/a=c/b=k
=>b=ak; c=bk=ak*k=ak^2
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+a^2k^2}{a^2k^2+a^2k^4}=\dfrac{1}{k^2}\)
\(\dfrac{a}{c}=\dfrac{a}{ak^2}=\dfrac{1}{k^2}\)
=>\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)

a
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Tương tự với 2 cụm còn lại, cộng theo vế và thu gọn sẽ được đpcm.
b
\(a^2+b^2\ge2ab\)
\(\Rightarrow\frac{a}{a^2+b^2}\le\frac{a}{2ab}=\frac{1}{2b}\)
Tương tự với 2 cụm còn lại, cộng theo vế là được đpcm.
xin bà con cô bác tick cho mik nghen
mà cmr là sao là cha mi rằng à