K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
29 tháng 11 2020

ta có \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+xz}{xyz}\)

hay \(xy+yz+xz=x+y+z\)do xyz=1 nên PT tương đương

\(xyz-xy-yz-xz+y+y+z-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(yz-y-z+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)\(\Rightarrow\)hoăc x=1 hoặc y=1 hoặc z=1

xét x=1 ta có P=0

tương tự với y và z ta đều có P=0

Vậy P=0

30 tháng 11 2020

gbkjlgbendy8wdceihrosmwjaimek,op

28 tháng 10 2016

Từ giả thiết ta có ngay \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Suy ra x + y = 0 hoặc y + z = 0 hoặc z + x = 0

Tới đây bạn tự làm nhé :)

26 tháng 4 2020

\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)

Dấu = xảy ra <=>x=y=z=1

26 tháng 4 2020

đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)

Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)

Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)

\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

\(\Rightarrow E\ge\frac{3}{2}\)

Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)

24 tháng 10 2020

Ta có: \(\frac{1}{\left(3x+1\right)\left(y+z\right)+x}=\frac{1}{3x\left(y+z\right)+x+y+z}\le\frac{1}{3x\left(y+z\right)+3\sqrt[3]{xyz}}\)

\(=\frac{1}{3x\left(y+z\right)+3\sqrt[3]{1}}=\frac{1}{3x\left(y+z\right)+3}=\frac{1}{3\left(xy+zx+1\right)}=\frac{1}{3}\cdot\frac{1}{\frac{1}{y}+\frac{1}{z}+1}\)

Tương tự ta chứng minh được:

\(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\) ; \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3}\cdot\frac{1}{\frac{1}{x}+\frac{1}{y}+1}\)

Cộng vế 3 BĐT trên lại:

\(A\le\frac{1}{3}\cdot\left(\frac{1}{\frac{1}{x}+\frac{1}{y}+1}+\frac{1}{\frac{1}{y}+\frac{1}{z}+1}+\frac{1}{\frac{1}{z}+\frac{1}{x}+1}\right)\)

\(\Leftrightarrow3A\le\frac{1}{\left(\frac{1}{\sqrt[3]{x}}\right)^3+\left(\frac{1}{\sqrt[3]{y}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{y}}\right)^3+\left(\frac{1}{\sqrt[3]{z}}\right)^3+1}+\frac{1}{\left(\frac{1}{\sqrt[3]{z}}\right)^3+\left(\frac{1}{\sqrt[3]{x}}\right)^3+1}\)

Đặt \(\left(\frac{1}{\sqrt[3]{x}};\frac{1}{\sqrt[3]{y}};\frac{1}{\sqrt[3]{z}}\right)=\left(a;b;c\right)\) khi đó:

\(3A\le\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)

\(=\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)+1}+\frac{1}{\left(b+c\right)\left(b^2-bc+c^2\right)+1}+\frac{1}{\left(c+a\right)\left(c^2-ca+a^2\right)+1}\)

\(\le\frac{1}{\left(a+b\right)\left(2ab-ab\right)+1}+\frac{1}{\left(b+c\right)\left(2bc-bc\right)+1}+\frac{1}{\left(c+a\right)\left(2ca-ca\right)+1}\)

\(=\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)

\(=\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)

\(=\frac{c}{a+b+c}+\frac{a}{b+c+a}+\frac{b}{c+a+b}\)

\(=\frac{a+b+c}{a+b+c}=1\)

Dấu "=" xảy ra khi: \(a=b=c\Leftrightarrow x=y=z=1\)

Vậy Max(A) = 1 khi x = y = z = 1

25 tháng 10 2020

Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath

30 tháng 9 2016

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xyz}\left(x+y+z\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\))

Mặt khác, ta có : \(\frac{1}{x+y+z}=2\) . 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x+y = 0 hoặc y + z = 0 hoặc z + x = 0

Từ đó suy ra P = 0 (lí do vì x,y,z là các số mũ lẻ)

13 tháng 10 2018

     

     \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\left(x;y;z,x+y+z\ne0\right)\)

\(\Rightarrow\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)

\(\Rightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)

\(\Leftrightarrow\left(xy+yz\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow y\left(x+z\right)\left(x+y+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)

\(\Leftrightarrow\left(x+z\right)\left(x+y\right)\left(y+z\right)=0\)

Từ đó \(x=-z\)hoặc \(x=-y\)hoặc \(y=-z\)

-Nếu \(x=-z\Rightarrow z^{2017}+x^{2017}=0\Rightarrow M=\frac{19}{4}+0=\frac{19}{4}\)

Tương tự với các trường hợp còn lại, ta cũng tính được \(M=\frac{19}{4}\)

14 tháng 10 2018

tự túc