K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2020

ĐKXĐ : \(x\ne4\)

\(\frac{2x-3}{4-x}>0\)

+) TH1 : \(\hept{\begin{cases}2x-3>0\\4-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{3}{2}\\x< 4\end{cases}\Leftrightarrow}\frac{3}{2}< x< 4}\)

+) TH2 : \(\hept{\begin{cases}2x-3< 0\\4-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< \frac{3}{2}\\x>4\end{cases}\left(ktm\right)}}\)

Vậy với \(\frac{3}{2}< x< 4\)thì \(\frac{2x-3}{4-x}>0\)

2 tháng 10 2020

\(\frac{2x-3}{4-x}>0\)

ĐK : x khác 4

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-3>0\\4-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x>3\\-x>-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{3}{2}\\x< 4\end{cases}}\Leftrightarrow\frac{3}{2}< x< 4\)

2. \(\hept{\begin{cases}2x-3< 0\\4-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x< 3\\-x< -4\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{3}{2}\\x>4\end{cases}}\)( loại )

=> Với \(\frac{3}{2}< x< 4\)thì thỏa mãn đề bài

16 tháng 7 2018

a) 3x - 2 = 0    =>   3x = 2    => x = 2/3

b) 2x - 1 = 0     =>  2x = 1      =>  x = 1/2

c) 5 ( 4+2x) = 8+5x

<=> 20 + 10x = 8 + 5x

<=> 10x - 5x = 8 - 20

<=>  5x  =  -12

x = -12/5

d) \(\frac{1}{2}+\frac{3}{4}x=6-\frac{4}{5}x\)

\(\frac{3}{4}x+\frac{4}{5}x=6-\frac{1}{2}\)

\(\frac{31}{20}x=\frac{11}{2}\)

\(x=\frac{11}{2}:\frac{31}{20}=\frac{110}{31}\)

e) 3 + 2x = 4 - 8x

<=> 2x + 8x = 4 - 3

10 x = 1

x = 1/10

\(5+\frac{1}{2}\left(x+5\right)=3\)

\(\frac{1}{2}\left(x+5\right)=3-5=-2\)

\(x+5=-2:\frac{1}{2}=-4\)

\(x=-4-5=1\)

Vậy ......

16 tháng 7 2018

a, 3x - 2 = 0

=> 3x = 2

=> x = 2/3

vậy_

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

d,

\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)

e,

\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)

\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)

\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)

Vậy không tồn tại $x$ thỏa mãn đề bài.

f, 

\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)

\(\Leftrightarrow 6x-3=10+6x\)

\(\Leftrightarrow 13=0\) (vô lý)

Vậy không tồn tại $x$ thỏa mãn đề bài.

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

a,

$0-|x+1|=5$

$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)

Do đó không tồn tại $x$ thỏa mãn điều kiện đề.

b,

\(2-|\frac{3}{4}-x|=\frac{7}{12}\)

\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)

\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)

c, 

\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)

\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)

\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)

\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

12 tháng 7 2019

a) \(\left(x-1\right)\left(x-2\right)>0\)

=> \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>1\\x>2\end{cases}}\) hoặc \(\hept{\begin{cases}x< 1\\x< 2\end{cases}}\)

=> \(1< x< 2\)

b) 2x - 3 < 0

=> 2x < 3

=> x < 3/2

c) \(\left(2x-4\right)\left(9-3x\right)>0\)

=> 2(x - 2). 3(3 - x) > 0

=> (x - 2)(3 - x) > 0

=> \(\hept{\begin{cases}x-2>0\\3-x>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\3-x< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>2\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x>3\end{cases}}\)

=>  2 < x < 3

19 tháng 7 2020

a. Ta có :

\(x^4-x^3-2x-4\)

\(=x^4-2x^3+x^3-2x-4\)

\(=x^3\left(x-2\right)+\left(x^3-2x^2\right)+\left(x^2-4\right)+\left(x^2-2x\right)\)

\(=x^3\left(x-2\right)+x^2\left(x-2\right)+\left(x+2\right)\left(x-2\right)+x\left(x-2\right)\)

\(=\left(x-2\right)\left(x^3+x^2+x+2+x\right)\)

\(=\left(x-2\right)\left[\left(x^3+2x\right)+\left(x^2+2\right)\right]\)

\(=\left(x-2\right)\left[x\left(x^2+2\right)+\left(x^2+2\right)\right]\)

\(=\left(x-2\right)\left(x^2+2\right)\left(x+1\right)\)

Ta lại có :

\(2x^4-3x^3+2x^2-6x-4\) ... biến đổi tương tự ta được \(\left(x^2+2\right)\left(x-2\right)\left(2x+1\right)\) 

Do đó với  \(x\ne2;x\ne\frac{1}{2}\) thì \(P=\frac{\left(x^2+2\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x^2+2\right)\left(2x+1\right)}=\frac{x+1}{2x+1}\) ( = 1/2 )

20 tháng 7 2020

Cảm ơn Let Hate Him nha! Nhưng bạn có thể biến đổi nốt phần sau giúp mình được không?

a:=>x^2-1-x=2x-1

=>x^2-x-1=2x-1

=>x^2-3x=0

=>x=0(loại) hoặc x=3(nhận)

b:=>x+2=0 hoặc 5-3x=0

=>x=-2 hoặc x=5/3

c:=>20(1-2x)+6x=9(x-5)-24

=>20-40x+6x=9x-45-24

=>-34x+20=9x-69

=>-43x=-89

=>x=89/43

d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3

=>2x^2+4x-19=-2x+7

=>2x^2+6x-26=0

=>x^2+3x-13=0

=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)

e: =>(2x-3)(2x-3-x-1)=0

=>(2x-3)(x-4)=0

=>x=4 hoặc x=3/2