K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2020

Áp dụng cách đánh giá quen thuộc 

\(3\left(\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\right)\ge\left(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\right)^2\)

Hay \(\sqrt{3\left(a^2+b^2+c^2\right)}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)

Ta cần chỉ ra được \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

Ta đánh giá theo bất đẳng thức Bunhiacopxki dạng phân thức, Cần chú ý đến \(a^2+b^2+c^2\). Ta được

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

Ta cần chứng minh được

\(\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

Hay \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)

Dễ thấy \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Do đó \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\)

Theo bất đẳng thức Bunhiacopxki 

\(\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\ge\left(a^2b+b^2c+c^2a\right)^2\)

Do đó ta được \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)

Bài toán được chứng minh :3

9 tháng 2 2022

áp dụng cách đánh giá :
\(3\left(\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\right)\ge\)\(\left(\sqrt{\frac{a^2+b^2}{2}\sqrt{\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}}}\right)\)

\(hay\sqrt{3\left(a^2+b^2+c^2\right)\ge\sqrt{\frac{a^2+b^2}{2}+\sqrt{\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}}}}\)

Ta cần chỉ ra được :\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

Ta đánh giá theo bất đẳng thức Bunhiacopxki dạng phân thức, cần chú ý đến \(a^2+b^2+c^2\)Ta được :

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

ta cần chứng minh được :

\(\frac{\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

\(hay\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)

Dễ thấy\(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Do đó\(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\)

Theo bất đẳng thức Bunhiacopxki

\(\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\ge\left(a^2b+b^2c+c^2a\right)^2\)

Do đó ta được

\(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)

Bài toán được chứng minh :333!~

Phân tích bài toán.

Ta làm 2 vế đẳng thức xuất hiện đại lượng kiểu\(\left(a-b\right)^2;\left(b-c\right)^2;\left(c-a\right)^2\)

Để biến đổi vế trái ta sẽ được:

\(\frac{a^2}{b}-2a+b+\frac{b^2}{c}-2b+c+\frac{c^2}{a}-2c+a=\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\)

\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}-\left(a+b+c\right)\)

Để biến đổi vế phải ta sẽ được:

\(\frac{\left(a-b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}+\frac{\left(b-c\right)^2}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}+\frac{\left(c-a\right)^2}{2\sqrt{2\left(c^2+a^2\right)}+2\left(c+a\right)}\)

Đến đây ta chỉ cần chỉ ra được \(\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\ge0\)

Bài làm:

Bất đẳng thức cần chứng mình tương đương với:

\(\frac{a^2}{b}-2a+b+\frac{b^2}{c}-2b+c+\frac{c^2}{a}-2c+a\ge\)

\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}-\left(a+b+c\right)\)

\(\Leftrightarrow\frac{\left(a-b\right)^1}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)

\(\sqrt{\frac{a^2+b^2}{2}}-\frac{a^2+b^2}{2}+\sqrt{\frac{b^2+c^2}{2}}-\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}-\frac{c+a}{2}\)

\(\Leftrightarrow\frac{\left(a-b\right)^1}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)

\(\frac{\left(a-b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}+\frac{\left(b-c\right)^2}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}+\frac{\left(c-a\right)^2}{2\sqrt{2\left(c^2+a^2\right)}+2\left(c+a\right)}\)

\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\right]+\left(b-c\right)^2\left[\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}\right]\)

\(+\left(c-a\right)^2\left[\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}\right]\ge0\)

Đặt:

\(A=\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\)

\(B=\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}\)

\(C=\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}\)

Chứng mình hoàn tất nếu ta chứng mình được A,B.C\(\ge\)0, Vậy:

\(A=\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}=\frac{2\sqrt{2\left(a^2+b^2\right)}+2a+b}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}>0\)

\(B=\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}=\frac{2\sqrt{2\left(b^2+c^2\right)}+2b+c}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}>0\)

\(C=\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}=\frac{2\sqrt{2\left(c^2+a^2\right)+2c+a}}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}>0\)

Vậy biểu thức đã được chứng minh.

Ta thấy: \(\frac{a^2}{b}-2a+b=\frac{\left(a-b\right)^2}{b}\)

\(\sqrt{a^2-ab+b^2}-\frac{a+b}{2}=\frac{a^2-ab+b^2-\frac{\left(a+b\right)^2}{b}}{\sqrt{a^2-ab+b^2}+\frac{a+b}{2}}=\frac{3\left(a-b\right)^2}{4\sqrt{a^2-ab+b^2}+2a+2b}\)

Bất đẳng thức tương đương với:

\(\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)

\(\frac{3\left(a-b\right)^2}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}+\frac{3\left(b-c\right)^2}{4\sqrt{b^2+c^2-bc}+2\left(b+c\right)}+\frac{3\left(c-a\right)^2}{b\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\)

\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\right]+\left(b-c\right)^2\left[\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\right]\)

\(+\left(c-a\right)^2\left[\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\right]\ge0\)

Ta đặt:

\(A=\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\)

\(B=\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\)

\(C=\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\)

Chứng mình sẽ hoàn tất nếu ta chứng minh được A,B,C\(\ge0\), vậy:

\(A=\frac{1}{b}-\frac{3}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}=\frac{4\sqrt{a^2+b^2-2ab}+2a+b}{4\sqrt{a^2+b^2-2ab}+2\left(a+b\right)}\ge0\)

\(B=\frac{1}{c}-\frac{3}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}=\frac{4\sqrt{b^2+c^2-2bc}+2b+c}{4\sqrt{b^2+c^2-2bc}+2\left(b+c\right)}\ge0\)

\(C=\frac{1}{c}-\frac{3}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}=\frac{4\sqrt{c^2+a^2-ca}+2c+a}{4\sqrt{c^2+a^2-ca}+2\left(c+a\right)}\ge0\)

Vậy biểu thức đã được chứng mình.

NV
1 tháng 3 2021

\(VT\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\dfrac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\dfrac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{2019}\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{x^2+z^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\) \(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)

\(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2}{x}+\dfrac{z^2+x^2}{y}+\dfrac{x^2+y^2}{z}-\left(x+y+z\right)\)

\(2\sqrt{2}VT\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)

\(2\sqrt{2}VT\ge\dfrac{4\left(x+y+z\right)^2}{2x+2y+2z}-\left(x+y+z\right)=x+y+z=\sqrt{2019}\)

\(\Rightarrow VT\ge\dfrac{\sqrt{2019}}{2\sqrt{2}}=\sqrt{\dfrac{2019}{8}}\) (đpcm)

22 tháng 9 2020

Đặt đẳng thức là A. Áp dụng bất đẳng thức AM-GM ta có:

\(\sqrt{2b\left(a-b\right)}\le\frac{2b+\left(a+b\right)}{2}=\frac{a+3b}{2}\)

Từ đó: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\)

Ta sẽ chứng minh: \(M=\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Thật vậy, ta có: \(M=\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ca}\)

Theo BĐT AM-GM ta có:

\(ab+bc+ca\le a^2+b^2+c^2\)

Áp dụng BĐT cauchy ta được:

\(M\ge\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a^2+b^2+c^2\right)+\frac{8}{3}\left(ab+bc+ca\right)}\)\(=\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a+b+c\right)^2}=\frac{3}{4}\)

Vì vậy: \(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Từ đó ta có: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\ge2\sqrt{2}.\frac{3}{4}=\frac{3\sqrt{2}}{2}\)

Vậy đẳng thức xảy xa khi và chỉ khi a=b=c

10 tháng 9 2017

Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập  springtime ấy

10 tháng 9 2017

Chào bác Thắng

20 tháng 12 2016

Ta có: 

\(\sqrt{3a^2+8b^2+14ab}=\sqrt{\left(3a+2b\right)\left(a+4b\right)}\le2a+3b\)

Khi đó \(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}\ge\frac{a^2}{2a+3b}\), tương tự ta có:

\(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\frac{c^2}{\sqrt{3c^2+8a^2+14ca}}\)

\(\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)\(\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\)

6 tháng 11 2019

Chú ý: \(\left(a^2+2b^2+c^2\right)\left(2^2+1^2+2^2\right)\ge\left(2a+2b+2c\right)^2\)

\(\Rightarrow a^2+2b^2+c^2\ge\frac{4\left(a+b+c\right)^2}{9}\Rightarrow\sqrt{a^2+2b^2+c^2}\ge\frac{2}{3}\left(a+b+c\right)\)

Tương tự: \(\sqrt{b^2+2c^2+a^2}\ge\frac{2}{3}\left(a+b+c\right)\)\(\sqrt{c^2+2a^2+b^2}\ge\frac{2}{3}\left(a+b+c\right)\)

Thay vào ta có: \(VT\le\frac{3\left(3a+b+3b+c+3c+a\right)}{2\left(a+b+c\right)}=6\)(qed)

Đẳng thức xảy ra khi a = b = c 

Is that true?

20 tháng 2 2020

Áp dụng bđt Bunhiacopxki ta được:

\(\left(\text{Σ}_{cyc}\frac{3a+b}{\sqrt{a^2+2b^2+c^2}}\right)^2\le3\left(\text{Σ}_{cyc}\frac{\left(3a+b\right)^2}{a^2+2b^2+c^2}\right)\)

Mặt khác cũng theo bđt Bunhiacopxki dạng phân thức, ta được:

\(\frac{\left(3a+b\right)^2}{a^2+2b^2+c^2}\le\frac{9a^2}{a^2+b^2+c^2}+\frac{b^2}{b^2}=\frac{9a^2}{a^2+b^2+c^2}+1\)

Hoàn toàn tương tự, ta có:

\(\frac{\left(3b+c\right)^2}{b^2+2c^2+a^2}\le\frac{9b^2}{b^2+c^2+a^2}+1\);\(\frac{\left(3c+a\right)^2}{c^2+2a^2+b^2}\le\frac{9c^2}{c^2+a^2+b^2}+1\)

Cộng từng vế của các bđt trên, ta được:

\(\text{​​}\text{​​}\text{Σ}_{cyc}\frac{\left(3b+c\right)^2}{b^2+2c^2+a^2}\le\text{Σ}_{cyc}\frac{9b^2}{b^2+c^2+a^2}+3=9+3=12\)

Do đó \(\left(\text{Σ}_{cyc}\frac{3a+b}{\sqrt{a^2+2b^2+c^2}}\right)^2\le3\left(\text{Σ}_{cyc}\frac{\left(3a+b\right)^2}{a^2+2b^2+c^2}\right)\le3.12=36\)

Hay \(\left(\text{Σ}_{cyc}\frac{3a+b}{\sqrt{a^2+2b^2+c^2}}\right)\le6\)

Đẳng thức xảy ra khi a = b = c

Để ý theo bất đẳng thức Bunhiacopxki ta có:

\(\left(a+b+c\right)^2\) sẽ nhỏ hơn hoặc bằng với:

\(\left(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\right)\left(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\right)\)

Mặt khác cũng theo bất đẳng thức Bunhiacopxki ta được:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\)

\(=\sqrt{a}\sqrt{a^3+8abc}+\sqrt{b}\sqrt{b^3+8abc}+\sqrt{c}\sqrt{c^3+8abc}\)sẽ nhỏ hơn hoặc bằng với:

\(\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3\right)+24abc}\)

Ta chứng minh được \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)nên ta được:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ca}+c\sqrt{c^2+8ab}\le\left(a+b+c\right)^2\)

\(\Rightarrow\left(a+b+c\right)^2\le\left(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\right)\left(a+b+c\right)^2\)

Hay \(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ca}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)

Vậy bất đẳng thức được chứng minh. Dấu đẳng thức xảy ra khi \(a=b=c\)