K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2020

Ta có : \(\hept{\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\\\left(a-b\right)^2\ge0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}a^2+1\ge2a\\b^2+1\ge2b\\a^2+b^2\ge2ab\end{cases}}\)

\(\Rightarrow\left(a^2+1\right)+\left(b^2+1\right)+\left(a^2+b^2\right)\ge2.\left(a+b+ab\right)\)

\(\Leftrightarrow a^2+b^2+1\ge a+b+ab\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

8 tháng 5 2019

\(a^3-b^3=\left(a-b\right).\left(a^2+ab+b^2\right)\)

\(\Leftrightarrow\)\(a^3-b^3=a^3+a^2b+ab^2-a^2b-ab^2-b^3\)

\(\Leftrightarrow\)\(a^3-b^3=a^3-b^3\)

\(\Rightarrow\)\(đpcm\)

8 tháng 5 2019

\(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)

\(\Leftrightarrow\)\(a^3+b^3=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

\(\Leftrightarrow\)\(a^3+b^3=a^3+b^3\)

\(\Rightarrow\)\(đpcm\)

28 tháng 2 2016

e cu len day hoi chi zay

13 tháng 9 2018

a) Ta có \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)( chia 2 vế cho 2 )

b) \(\frac{a+1}{a}\)chưa lớn hơn hoặc bằng 2 đc , bạn thay a=2 vào thì 3/2<2

c) Ta có \(x^2\ge0\);\(y^2\ge0\);\(z^2\ge0\)

nên \(x^2+y^2+z^2\ge0\)

\(\Rightarrow x^2+y^2+z^2+3\ge3\)

13 tháng 9 2018

Ta có \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)

Ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab\)

\(\Rightarrow\dfrac{1}{a^2-ab+b^2}\le\dfrac{1}{ab}=\dfrac{abc}{ab}=c\) ( do $abc=1$ )

Tương tự ta có :

\(\dfrac{1}{b^2-bc+c^2}\le a\)

\(\dfrac{1}{c^2-ab+a^2}\le b\)

Cộng vế với vế các BĐT trên có :

\(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)

Dấu "=" xảy ra khi $a=b=c$

NV
10 tháng 3 2021

\(VT=\dfrac{1}{a^2+b^2-ab}+\dfrac{1}{b^2+c^2-bc}+\dfrac{1}{c^2+a^2-ca}\)

\(VT\le\dfrac{1}{2ab-ab}+\dfrac{1}{2bc-bc}+\dfrac{1}{2ca-ca}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c=1\)

6 tháng 10 2020

1. BĐT tương đương với \(6\left(a^2+b^2\right)-2ab+8-4\left(a\sqrt{b^2+1}+b\sqrt{a^2+1}\right)\ge0\)

\(\Leftrightarrow\left[a^2-4a\sqrt{b^2+1}+4\left(b^2+1\right)\right]+\left[b^2-4b\sqrt{a^2+1}+4\left(a^2+1\right)\right]\)\(+\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a-2\sqrt{b^2+1}\right)^2+\left(b-2\sqrt{a^2+1}\right)^2+\left(a-b\right)^2\ge0\)(đúng)

=> Đẳng thức không xảy ra

6 tháng 10 2020

2. \(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c+1\right)\)

\(\Leftrightarrow a^4+b^4+c^2+1\ge2a^2b^2-2a^2+2ac+2a\)

\(\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^2-2ac+a^2\right)+\left(a^2-2a+1\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c-a\right)^2+\left(a-1\right)^2\ge0\)

22 tháng 11 2017

1) Áp dụng BĐT Cauchy-Schwarz, ta có:

\(VT=\dfrac{9}{3\left(ab+bc+ca\right)}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{16}{\left(a+b+c\right)^2+ab+bc+ca}=\dfrac{16}{1+ab+bc+ca}\ge\dfrac{16}{1+\dfrac{\left(a+b+c\right)^2}{3}}=\dfrac{16}{1+\dfrac{1}{3}}=12\)

Lưu ý: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Đẳng thức xảy ra khi a=b=c=1/3

23 tháng 11 2017

Post lại :v

1) Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\dfrac{1}{ab+bc+ca}+\dfrac{4}{2\left(ab+bc+ca\right)}+\dfrac{1}{a^2+b^2+c^2}\)

\(VT\ge\dfrac{3}{\left(a+b+c\right)^2}+\dfrac{\left(2+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(VT\ge3+\dfrac{9}{\left(a+b+c\right)^2}=3+9=12\)(đpcm)

Đảng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

2) Áp dụng BĐT Cauchy-Schwarz, ta có:

\(VT=\dfrac{\dfrac{2}{3}}{ab}+\dfrac{\dfrac{1}{3}}{ab}+\dfrac{3}{a^2+b^2+ab}\)

\(VT\ge\dfrac{\dfrac{2}{3}}{\dfrac{\left(a+b\right)^2}{4}}+\dfrac{\left(\dfrac{1}{\sqrt{3}}+\sqrt{3}\right)^2}{a^2+b^2+ab+ab}\)

\(VT\ge\dfrac{\dfrac{2}{3}}{\dfrac{1}{4}}+\dfrac{\dfrac{16}{3}}{\left(a+b\right)^2}=\dfrac{8}{3}+\dfrac{16}{3}=\dfrac{24}{3}=8\)(đpcm)

Đẳng thức xảy ra khi \(a=b=\dfrac{1}{2}\)