K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

đổi ẩn 

\(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};z\right)\)\(\Rightarrow\)\(x+y+z=3\)

\(P=\Sigma\frac{1}{\sqrt{xy+x+y}}\ge\Sigma\frac{2\sqrt{3}}{xy+x+y+3}\ge\frac{18\sqrt{3}}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+9}=\sqrt{3}\)

dấuu "=" xảy ra khi \(a=b=c=1\)

8 tháng 6 2016

Ta có: \(\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}}{2}\)

\(\frac{ca}{\sqrt{b+ac}}=\frac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{\frac{ca}{a+b}+\frac{ca}{b+c}}{2}\)

\(\frac{ab}{\sqrt{c+ab}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{ab}{a+c}+\frac{ab}{b+c}}{2}\)

Cộng 3 vế ta được: \(P\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{a+b}+\frac{ca}{b+c}+\frac{ab}{a+c}+\frac{ab}{b+c}}{2}\)

\(=\frac{\frac{c\left(a+b\right)}{a+b}+\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}}{2}=\frac{a+b+c}{2}=\frac{1}{2}\)

        Vậy  MinP = 1/2 

8 tháng 6 2016

\(\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{a.1+bc}}=\frac{bc}{\sqrt{a\left(a+b+c\right)+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)

26 tháng 8 2020

Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2

Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)

\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)

Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)

Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)

\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)

\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)

Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)

Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có 

\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)

Lập bảng biến thiên ta có min[2;\(+\infty\)\(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)

Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2

26 tháng 8 2020

Đặt a=xc; b=cy (x;y >=1)

  • Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)
  • Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)
  • Xét x,y>1 thay vào giả thiết ta có

\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)

\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)

Biểu thức P được viết lại như sau

\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)

\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)

Đặt t=xy với t>=4

Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)

Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)

Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)

Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c

2 tháng 6 2019

Có bất đẳng thức xy+zt≥x+zy+txy+zt≥x+zy+t với x,z≥0x,z≥0 ,y,t>0y,t>0

Giả sử cc  lớn nhất trong các số a,b,ca,b,c thì c≥13c≥13

Do a,b,c≥0a,b,c≥0 nên

Ta có P2≥aa+1+bb+1+cc+1≥a+ba+b+2+cc+1P2≥aa+1+bb+1+cc+1≥a+ba+b+2+cc+1

Mà a+ba+b+2+cc+1−12=1−c3−c+c−12(c+1)=(1−c)(3c−1)(3−c)(2c+2)≥0

2 tháng 6 2019

sai đó nha

...

...

NV
1 tháng 3 2022

\(\sqrt{a^2+\dfrac{1}{b+c}}=\dfrac{2}{\sqrt{17}}\sqrt{\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)

Mặt khác:

\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6.\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

11 tháng 10 2017

Ta có:

\(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ca+a^2}}\)

\(=\frac{1}{\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}}+\frac{1}{\sqrt{\frac{1}{4}\left(b+c\right)^2+\frac{3}{4}\left(b-c\right)^2}}+\frac{1}{\sqrt{\frac{1}{4}\left(c+a\right)^2+\frac{3}{4}\left(c-a\right)^2}}\)

\(\le2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\le2.\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

25 tháng 5 2018

\(c+ab=\left(a+b+c\right)c+ab=ac+cb+c^2+ab=\left(a+c\right)\left(b+c\right)\)

Tương tự : \(a+bc=\left(a+b\right)\left(a+c\right);c+ab=\left(c+a\right)\left(c+b\right)\)

\(P=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\)

áp dụng bất đẳng tức cauchy :

\(\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)

cộng vế theo vế 

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{c+b}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}+\frac{a}{b+a}\right)\)

\(\Leftrightarrow P\le\frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{1}{2}\cdot3=\frac{3}{2}\)

dấu "=" xảy ra khi a=b=c=1/3

24 tháng 8 2020

Có a+b+c=1 => c=(a+b+c).c=ac+bc+c2

\(\Rightarrow c+ab=ac+bc+c^2+ab=a\left(b+c\right)+c\left(b+c\right)=\left(b+c\right)\left(a+c\right)\)

\(\Rightarrow\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{\frac{a}{c+b}+\frac{b}{c+b}}{2}\)

Tương tự ta có \(\hept{\begin{cases}a+bc=\left(a+b\right)\left(a+c\right)\\b+ac=\left(b+a\right)\left(b+c\right)\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{b+ca}}=\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{b+a}}{2}\end{cases}}}\)

\(\Rightarrow P\le\frac{\frac{b}{a+b}+\frac{c}{c+a}+\frac{c}{b+c}+\frac{a}{a+b}+\frac{a}{c+a}+\frac{b}{c+b}}{2}\)\(=\frac{\frac{a+c}{a+c}+\frac{c+b}{c+b}+\frac{a+b}{a+b}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)