K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2020

t nghĩ ngoài SOS ra thì không còn lời giải sơ cấp nào khác, nếu Max = 1, không có Wolfram Alpha cũng không chắc lắm.

 Thử pqr xem nào:

\(P=\frac{ab^2+bc^2+ca^2+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+6}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{\frac{1}{2}\left(a-b\right)\left(b-c\right)\left(c-a\right)+\frac{1}{2}\Sigma ab\left(a+b\right)+4\left(a+b+c\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(\le\frac{\frac{1}{2}\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}+\frac{1}{2}\Sigma ab\left(a+b\right)+4\left(a+b+c\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{\frac{1}{2}\sqrt{-4p^3r+p^2q^2+18pqr-4q^3-27r^2}+\frac{1}{2}\left(pq-3r\right)+4p}{r+2q+4p+8}\le1\)

Có: \(p^2-2q=3\therefore q=\frac{\left(p^2-3\right)}{2}\). Từ đó quy bài toán về chứng minh:

\(\frac{5}{2}r+\frac{\left(14-3p\right)\left(3p+1\right)^2}{108}+\frac{263}{54}\ge\frac{1}{2}\sqrt{-4p^3r+p^2q^2+18pqr-4q^3-27r^2}\)

Vì \(0< p=a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\) nên cả 2 vế đều không âm.

Lúc này bất đẳng thức tương đương: 

$${\frac{173}{8}}+15/2\,p+25\,r+{\frac {107\,{p}^{2}}{8}}+13\,{r}^{2}+5
\,r{p}^{2}-5/2\,r{p}^{3}+21/2\,rp-{p}^{3}-1/8\,{p}^{4}-1/2\,{p}^{5}+1/
8\,{p}^{6} \geqq 0$$

(Đoạn này gõ Latex, không hiên thì vào thống kê hỏi đáp nhá)

\(\Leftrightarrow f\left(r\right)\ge0\). Mặt khác \(f'\left(r\right)=26r+\frac{\left(-15p+10+2\sqrt{415}\right)\left(15p-10+\sqrt{415}\right)^2}{1350}+\frac{904}{27}-\frac{83\sqrt{415}}{135}>0\)

Nên khi r giảm thi f giảm. Mặt khác do \(\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\ge0\)

Nên \(r\ge\frac{1}{27}\left(-2p^3-2\sqrt{\left(p^2-3q\right)^3}+9pq\right)=\frac{1}{27}\left(-2p^3-2\sqrt{\left\{\frac{\left(9-p^2\right)}{2}\right\}^3}+\frac{9p\left(p^2-3\right)}{2}\right)\)

Vì vậy \(f\left(r\right)\ge f\left(\frac{1}{27}\left(-2p^3-2\sqrt{\left\{\frac{\left(9-p^2\right)}{2}\right\}^3}+\frac{9p\left(p^2-3\right)}{2}\right)\right)\ge0\)

Bác Cool Kid chứng minh BĐT 1 biến ở cuối thử xem:v

3 tháng 5 2020

Chết, cách kia sai rồi, đánh thiếu số 6 hèn gì không ra -_-

22 tháng 4 2020

Cách 3 :

\(a+b+c\ge2+abc\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge6+3abc\)

Từ điều kiện ta có thể suy ra : \(a+b+c\ge3\)

Từ đó ta có : \(6\le\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Đến đây ta cần chứng minh :     \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)+3abc\)

                                            \(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)(Đây là hệ quả của Cô-si)

22 tháng 3 2020

Ta có: \(a^2+b^2+c^2\ge ab+bc+ac\ge3\sqrt[3]{a^2b^2+b^2c^2+c^2a^2}\)

=> \(\hept{\begin{cases}a^2+b^2+c^2\ge3\\1\ge abc\end{cases}}\)

Có:  \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3+6=9\)

=> \(a+b+c\ge3=2+1\ge2+abc\)

28 tháng 12 2018

làm như giỏi lắm í, thôi khỏi nói cũng biết, ko cần thể hiện đâu

29 tháng 12 2018

\(A=\frac{a}{\sqrt{3+a^2}}+\frac{b}{\sqrt{3+b^2}}+\frac{c}{\sqrt{3+c^2}}\)

     \(=\frac{a+b+c}{\sqrt{3+a^2}+\sqrt{3+b^2}+\sqrt{3+c^2}}\)

Ta có: \(\sqrt{3+a^2}+\sqrt{3+b^2}+\sqrt{3+c^2}\)

\(=\sqrt{ab+bc+ac+a^2}+\sqrt{ab+bc+ac+b^2}+\sqrt{ab+bc+ca+c^2}\)

\(=\sqrt{b\left(a+c\right)+a\left(a+c\right)}+\sqrt{b\left(a+b\right)+c\left(a+b\right)}+\sqrt{b\left(a+c\right)+c\left(a+c\right)}\)

\(=\sqrt{\left(a+c\right)\left(a+b\right)}+\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(a+c\right)\left(b+c\right)}\)

\(\le\frac{a+c+a+b}{2}+\frac{a+b+b+c}{2}+\frac{a+c+b+c}{2}\)

\(\le\frac{2a+a+2b+b+2c+c}{2}=\frac{3a+3b+3c}{2}=\frac{3}{2}\left(a+b+c\right)\)

Suy ra : \(A=\frac{a+b+c}{\sqrt{3+a^2}+\sqrt{3+b^2}+\sqrt{3+c^2}}\ge\frac{2}{3}\)

Dấu "=" xảy ra khi và chỉ khi a=b=c=0

Vậy Amin = \(\frac{2}{3}\)

Chắc sai. Mong bạn giúp đỡ. Cảm ơn!

Nhiếu cách chứng minh cho BĐT AM-GM (3 số dương).Cho a, b, c là các số thực dương. Chứng minh rằng \(a^3+b^3+c^3\ge3abc\)Chắc hẳn mỗi người chúng ta đều biết đến cách c/m: "\(VT-VP=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\). Chắc chắn đây là cách chứng minh thông minh nhất, bởi tính sơ cấp của nó. Vậy liệu bạn còn tìm được cách chứng minh nào nữa không?...
Đọc tiếp

Nhiếu cách chứng minh cho BĐT AM-GM (3 số dương).

Cho a, b, c là các số thực dương. Chứng minh rằng \(a^3+b^3+c^3\ge3abc\)

Chắc hẳn mỗi người chúng ta đều biết đến cách c/m: "\(VT-VP=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\). Chắc chắn đây là cách chứng minh thông minh nhất, bởi tính sơ cấp của nó. Vậy liệu bạn còn tìm được cách chứng minh nào nữa không? (đừng bảo mình là áp dụng bđt AM-GM cho 3 số nhé! Vì ta đang chứng minh nó mà:)) 

Cập nhật: Đây là 1 cách mình vừa tìm ra:(dù ko chắc nhưng vẫn đăng để mọi người tìm lỗi cho mình:v)

Không mất tính tổng quát giả sử \(c=min\left\{a,b,c\right\}\).Ta có:

\(VT-VP=\frac{1}{3}\left(a+2b+3c\right)\left(a-b\right)^2+\frac{1}{3}\left(b+2c\right)\left(b-c\right)^2+\frac{1}{3}\left(c+2a\right)\left(c-a\right)^2+b\left(a-c\right)\left(b-c\right)\ge0\)

---------------------------------------------Bài viết vẫn còn tiếp tục cập nhật-------------------------------------------

 

0
2 tháng 10 2019

ok. Mình không nghĩ là toán 8 và thực sự chả hiểu j cả

24 tháng 5 2017

Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn

24 tháng 5 2017

bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x) 

VT (ở đề bài) = a+b+c 

<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0

từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r 

26 tháng 10 2016

khói quá

27 tháng 10 2016

1.

Áp dụng hệ quả cô si:

\(\left(a^2+b^2+c^2\right)^{1000}\le3^{999}\left(a^{2000}+b^{2000}+c^{2000}\right)=3^{1000}\)

=>\(a^2+b^2+c^2\le3\)Dấu = khi a=b=c=1

không biết đúng hay sai đâu

5 tháng 6 2018

Ta có P=\(\frac{2}{2-c^2}+\frac{2}{2-a^2}+\frac{2}{2-b^2}\ge\frac{\left(\sqrt{2}+\sqrt{2}+\sqrt{2}\right)^2}{6-\left(a^2+b^2+c^2\right)}=\frac{18}{4}=\frac{9}{2}\)

Vậy ...

^_^