K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

A. =A3+B3 B. =A5+B5

C. =C6+D3 D. =B3+A3

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

\(a^2+b^2+c^2=(a+b)^2-2ab+c^2=(-c)^2-2ab+c^2=2(c^2-2ab)\)

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)

Do đó: 

$2(a^2+b^2+c^2).3(a^3+b^3+c^3)=36abc(c^2-2ab)$

Mặt khác:
\(a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5\)

\(=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5\)

\(=(c^2-2ab)(-c^3+3abc)+a^2b^2c+c^5\)

\(=-c^5+3abc^3+2abc^3-6a^2b^2c+a^2b^2c+c^5\)

\(=5abc^3-5a^2b^2c=5abc(c^2-ab)\)

\(\Rightarrow 5(a^5+b^5+c^5)=25abc(c^2-ab)\)

Do đó 2 đẳng thức trên không bằng nhau.

 

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

1. Đề sai với $a=1; b=0; c=-1$

2. Vì $a+b+c=0\Rightarrow a+b=-c$. Khi đó:

$a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc$ (đpcm)

3. Đề sai.

$a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5$

$=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5$

$=[(-c)^2-2ab][(-c)^3-3ab(-c)]+a^2b^2c+c^5$

$=(c^2-2ab)(3abc-c^3)+a^2b^2c+c^5$

$=3abc^3-c^5-6a^2b^2c+2abc^3+a^2b^2c+c^5$

$=3abc^3-6a^2b^2c+2abc^3+a^2b^2c$

$=abc(5c^2-5ab)=5abc(c^2-ab)$

2:Ta có: a+b+c=0

nên \(\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

$a+b+c=0\Rightarrow a+b=-c$

Ta có:
$a^3+b^3+c^3=(a+b)^3-3a^2b-3ab^2+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=(-c)^3+3abc+c^3=3abc$ chứ không phải bằng $0$ nhé. 

7 tháng 12 2021

A

7 tháng 12 2021

A

12 tháng 2 2022

Giúp mình bài này với ah.

AH
Akai Haruma
Giáo viên
12 tháng 2 2022

Lời giải:

Tìm min:

Áp dụng BĐT AM-GM:

$a^3+a^3+1\geq 3a^2$

$b^3+b^3+1\geq 3b^2$

$c^3+c^3+1\geq 3c^2$

$\Rightarrow 2(a^3+b^3+c^3)+3\geq 3(a^2+b^2+c^2)$

$\Leftrightarrow 2P+3\geq 9$

$\Leftrightarrow P\geq 3$

Vậy $P_{\min}=3$ khi $(a,b,c)=(1,1,1)$

----------------

Tìm max:

$a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2\leq 3$

$\Rightarrow a,b,c\leq \sqrt{3}$

Do đó: $a^3-\sqrt{3}a^2=a^2(a-\sqrt{3})\leq 0$

$\Rightarrow a^3\leq \sqrt{3}a^2$

Tương tự với $b,c$ và cộng theo vế:

$P\leq \sqrt{3}(a^2+b^2+c^2)=3\sqrt{3}$
Vậy $P_{\max}=3\sqrt{3}$ khi $(a,b,c)=(\sqrt{3},0,0)$ và hoán vị. 

Do \(0\le a,b,c\le1\)

nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)

Ta cũng có:

\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)

Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)

\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)

\(=3\)

Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)

 

12 tháng 2 2022

giúp mình câu hỏi này với ah.