K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2022

a) Xét tam giác ABN và tam giác ACM:

+ AB = AC (gt).

\(\widehat{A}\) chung

+ AM = AN (gt).

\(\Rightarrow\) Tam giác ABN = Tam giác ACM (c - g - c).

\(\Rightarrow\) BN = CM (2 cạnh tương ứng).

b) Ta có: AB = AM + MB; AC = AN + NC.

Mà AB = AC (gt); AM = AN (gt).

\(\Rightarrow\) MB = NC.

Ta có: \(\widehat{BMI}+\widehat{AMI}=180^{o}.\)

          \(\widehat{CNI}+\widehat{ANI}=180^{o}.\)

Mà \(\widehat{AMI}=\widehat{ANI}\) (Tam giác ABN = Tam giác ACM).

\(\Rightarrow\) \(\widehat{BMI}=\widehat{CNI}.\)

Xét tam giác BIM và tam giác CIN:

\(\widehat{BMI}=\widehat{CNI}(cmt).\)

\(\widehat{MBI}=\widehat{NCI}\) (Tam giác ABN = Tam giác ACM).

+ MB = NC (cmt).

\(\Rightarrow\) Tam giác BIM = Tam giác CIN (g - c - g).

c) Xét tam giác BAI và tam giác CAI có:

+ AI chung.

+ AB = AC (gt).

+ BI = CI (Tam giác BIM = Tam giác CIN)

\(\Rightarrow\) Tam giác BAI = Tam giác CAI (c - c - c).

\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).

\(\Rightarrow\) AI là phân giác \(\widehat{BAC}.\)

d) Xét tam giác AMN có: AM = AN (gt).

\(\Rightarrow\) Tam giác AMN cân tại A.

\(\Rightarrow\) \(\widehat{AMN}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (1)

Xét tam giác ABC có: AB = AC (gt).

\(\Rightarrow\) Tam giác ABC cân tại A.

\(\Rightarrow\) \(\widehat{ABC}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (2)

Từ (1); (2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}.\Rightarrow\) \(MN\) // \(BC.\)

8 tháng 1 2022

Vẽ giúp hình đc ạ

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

18 tháng 1 2023

1 2 1 1 2 1 2 A M N B C

a,Xét tam giác ABN và tam giác ACM có :

AM=AN (gt)

Góc A chung 

AB=AC(gt)

=> tam giác ABN = tam giác ACM (c-g-c)

b,theo câu a =>AMC^=ANB^(1)

Ta có : AM=AN =>tam giác AMN cân tại A => AMN^=ANM^(2)

Từ 1 và 2 =>MNI^=NMI^(3)

Vì B1^=C1^

B^=C^

=>B^-B1^=C-C1^

=>C2^=B2^(4)

Mặt khác : I1^=I2^(đối đỉnh) (5)

Từ 3 ; 4 và 5 => MNI^+NMI^+I1^=180*=I2^+B2^+C2^(tổng 3 góc của 1 tam giác )

=> MNI^+NMI^ / 2 = B2^+C2^ / 2

=> B2^=MNI^

Vì 2 góc này ở vị trí sole trong  và bằng nhau 

=> MN // BC

8 tháng 5 2022

tham khảo link:

https://qanda.ai/vi/solutions/RmjG9JTadE

8 tháng 5 2022

Cảm ơn bạn

2 tháng 7 2021

giúp mình bài này với 

 

a) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)

hay \(\widehat{ABH}=\widehat{ACH}\)

b) Xét ΔABH và ΔACH có 

AB=AC(ΔABC cân tại A)

AH chung

BH=CH(H là trung điểm của BC)

Do đó: ΔABH=ΔACH(c-c-c)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAE}=\widehat{NAE}\)

Xét ΔAME và ΔANE có 

AM=AN(gt)

\(\widehat{MAE}=\widehat{NAE}\)(cmt)

AE chung

Do đó: ΔAME=ΔANE(c-g-c)

c) Ta có: ΔAME=ΔANE(cmt)

nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)

mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)

nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥MN tại E(1)

Ta có: ΔABH=ΔACH(cmt)

nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

Suy ra: AH⊥BC tại H(2)

Từ (1) và (2) suy ra MN//BC(Đpcm)

22 tháng 12 2021

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là tia phân giác

M N A B C I

a) Vì AC=AB => ∆ABC cân=> B=C

Xét ∆BNC và ∆CMB ta có:

BM=CN

B=C

BC cạnh chung

=>∆BNC = ∆CMB(c-g-c)

=> BN=CM

b) Vì I là trung điểm của BC => BI=CI

Xét  ∆ABI và ∆ACI ta có:

BI=CI

B=C

AC=AB

=> ∆ABI = ∆ACI (c-g-c)

c) Vì  ∆ABI = ∆ACI (chứng minh trên)=> A1=A2=> AI là trung điểm của góc A

HT

a) Vì AC=AB => ∆ABC cân=> B=C

Xét ∆BNC và ∆CMB ta có:

BM=CN

B=C

BC cạnh chung

=>∆BNC = ∆CMB(c-g-c)

=> BN=CM

b) Vì I là trung điểm của BC => BI=CI

Xét  ∆ABI và ∆ACI ta có:

BI=CI

B=C

AC=AB

=> ∆ABI = ∆ACI (c-g-c)

c) Vì  ∆ABI = ∆ACI (chứng minh trên)=> A1=A2=> AI là trung điểm của góc A

HT