K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2020

Theo BĐT AM - GM cho 3 số dương, ta có: \(\left(3x+1\right)\left(y+z\right)+x=3xy+3zx+x+y+z\)

\(\ge3xy+3zx+3\sqrt[3]{xyz}=3zx+3xy+3=3\left(zx+xy+1\right)\)(Do xyz = 1)

\(\Rightarrow\frac{1}{\left(3x+1\right)\left(y+z\right)+x}\le\frac{1}{3\left(zx+xy+1\right)}\)(1)

Tương tự ta có: \(\frac{1}{\left(3y+1\right)\left(z+x\right)+y}\le\frac{1}{3\left(xy+yz+1\right)}\)(2); \(\frac{1}{\left(3z+1\right)\left(x+y\right)+z}\le\frac{1}{3\left(yz+zx+1\right)}\)(3)

Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được:  \(P\le\frac{1}{3}\left(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\right)\)

Ta có BĐT: \(a^3+b^3\ge ab\left(a+b\right)\)

Thật vậy, với a, b dương thì (*)\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Áp dụng BĐT trên và sử dụng giả thiết xyz = 1, ta được: \(\frac{1}{xy+yz+1}=\frac{\sqrt[3]{xyz}}{y\left(z+x\right)+\sqrt[3]{xyz}}\)

\(=\frac{\sqrt[3]{xyz}}{y\left[\left(\sqrt[3]{z}\right)^3+\left(\sqrt[3]{x}\right)^3\right]+\sqrt[3]{xyz}}\le\frac{\sqrt[3]{xyz}}{y\sqrt[3]{zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}\)

\(=\frac{\sqrt[3]{xyz}}{\sqrt[3]{y^3zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}=\frac{\sqrt[3]{xyz}}{\sqrt[3]{y^2}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{xyz}}\)

\(=\frac{\sqrt[3]{zx}}{\sqrt[3]{y}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+\sqrt[3]{zx}}=\frac{\sqrt[3]{zx}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(*)

Tương tự: \(\frac{1}{yz+zx+1}\le\frac{\sqrt[3]{xy}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(**); \(\frac{1}{zx+xy+1}\le\frac{\sqrt[3]{yz}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}\)(***)

Cộng theo từng vế của 3 BĐT (*), (**), (***), ta được: \(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\le\frac{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}{\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}}=1\)

\(\Rightarrow P\le\frac{1}{3}\left(\frac{1}{xy+yz+1}+\frac{1}{yz+zx+1}+\frac{1}{zx+xy+1}\right)\le\frac{1}{3}\)

Đẳng thức xảy ra khi x = y = z = 1

21 tháng 2 2020

https://h.vn//hoi-dap/question/873191.html

30 tháng 12 2016

Ta có

\(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(z+1\right)^2\ge0\end{cases}}\)và \(\hept{\begin{cases}x^2+1>0\\y^2+1>0\\z^2+1>0\end{cases}}\)

\(\Rightarrow A=\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\ge0\)

Kết hợp với điều kiện ban đầu thì

GTNN của A là 0 đạt được khi 

\(\left(x,y,z\right)=\left(-1,-1,5;-1,5,-1;5,-1-1\right)\)

25 tháng 7 2017

bài này cần x,y,z>0 nữa, vừa xem xong bài y hệt của LCC :v

Dự đoán dấu "=" khi \(x=y=z=1\) thì \(P=24\)

Ta chứng minh P=24 là GTNN

Thật vậy áp dụng BĐT C-S ta có:

\(P=Σ\frac{\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2}{\left(z^2+1\right)\left(x+y\right)^2}\ge\frac{\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2}{Σ\left(z^2+1\right)\left(x+y\right)^2}\)

Cần chứng minh: \(\frac{\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2}{Σ\left(z^2+1\right)\left(x+y\right)^2}\ge24\)

\(\Leftrightarrow\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2\ge24Σ\left(z^2+1\right)\left(x+y\right)^2\)

Đặt \(\hept{\begin{cases}x+y+z=3u\\xy+yz+xz=3v^2\\xyz=w^3\end{cases}}\) \(\Rightarrow u=1\) thì

\(Σ\left(x+1\right)\left(y+1\right)\left(z+1\right)=Σ\left(x^2y+x^2z+2x^2+2xy+2x\right)\)

\(=9uv^2-3w^3+2u\left(9u^2-6v^2\right)+9uv^2+6u^3=3\left(8u^3+uv^2-w^3\right)\)

Và  \(Σ\left(z^2+1\right)\left(x+y\right)^2=2Σ\left(x^2y^2+x^2yz+x^2u+xyu^2\right)\)

\(=2\left(9v^4-6uw^3+3uw^3+9u^4-6u^2v^2+3u^2v^2\right)\)

\(=6\left(3u^4-u^2v^2+3v^4-uw^3\right)\). Can cm \(f\left(w^3\right)\ge0\)

\(f\left(w^3\right)=\left(8u^3+uv^2-w^3\right)^2-16\left(3u^6-u^4v^2+3u^2v^4-u^3w^3\right)\)

\(f'\left(w^3\right)=-2\left(8u^3+uv^2-w^3\right)+16u^3=2w^3-2uv^2\le0\)

Thay \(f\) la ham` ngh!ch bien, do đó, BĐT có 1 GTLN của w3 khi 2 biến bằng nhau

Đặt \(y=x;z=3-2x\), Khi đó: 

\(BDT\Leftrightarrow\left(x-1\right)^2\left(x^4-2x^3-11x^2+24x+4\right)\ge0\)

30 tháng 9 2016

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xyz}\left(x+y+z\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\))

Mặt khác, ta có : \(\frac{1}{x+y+z}=2\) . 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x+y = 0 hoặc y + z = 0 hoặc z + x = 0

Từ đó suy ra P = 0 (lí do vì x,y,z là các số mũ lẻ)

9 tháng 1 2020

We have:

\(A=\Sigma_{cyc}\frac{1}{3xy+3zx+x+y+z}\le\frac{1}{3xy+3zx+3\sqrt[3]{xyz}}=\Sigma_{cyc}\frac{1}{3xy+3zx+3}=\Sigma_{cyc}\frac{1}{3\left(xy+zx+1\right)}\)

Dat \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)

\(\Rightarrow A\le\Sigma_{cyc}\frac{1}{3\left(\frac{1}{ab}+\frac{1}{ca}+1\right)}=\Sigma_{cyc}\frac{a}{3\left(a+b+c\right)}=\frac{1}{3}\)

Dau '=' xay ra khi \(x=y=z=1\)

6 tháng 2 2021

Áp dụng bất đẳng thức Cô-si, ta có: \(\left(3x+1\right)\left(y+z\right)+x=3xy+3xz+\left(x+y+z\right)\ge3xy+3xz+3\sqrt[3]{xyz}\)\(=3xy+3xz+3\Rightarrow\frac{1}{\left(3x+1\right)\left(y+z\right)+x}\le\frac{1}{3\left(xy+xz+1\right)}\)

Tiếp tục áp dụng bất đẳng thức dạng \(u^3+v^3\ge uv\left(u+v\right)\), ta được: \(\frac{1}{3\left(xy+xz+1\right)}=\frac{1}{3\left[x\left(\left(\sqrt[3]{y}\right)^3+\left(\sqrt[3]{z}\right)^3\right)+1\right]}\le\frac{1}{3\left[x\sqrt[3]{yz}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+1\right]}\)\(=\frac{\sqrt[3]{xyz}}{3\left[\sqrt[3]{x^2}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+\sqrt[3]{xyz}\right]}=\frac{\sqrt[3]{yz}}{3\left(\sqrt[3]{xy}+\sqrt[3]{yz}+\sqrt[3]{zx}\right)}\)

Tương tự rồi cộng lại theo vế, ta được: \(P\le\frac{1}{3}\)

Đẳng thức xảy ra khi x = y = z = 1