K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

Ta có:

\(2020\equiv1\left(mod3\right)\)\(\Rightarrow2020^{2020}\equiv1\left(mod3\right)\)

\(\Rightarrow2020^{2020}+1\equiv2\left(mod3\right)\)

Lại có:

\(n^3+2018n=n\left(n^2+2018\right)\)

\(+\)Nếu n chia hết cho 3 thì \(n\left(n^2+2018\right)⋮3\)

+) Nếu \(n⋮̸3\)thì \(n^2+2018⋮3\)

Do đó n(n^2+2018) luôn chia hết cho 3

Vậy....

23 tháng 1 2021

Giả sử tồn tại số nghuyên n thỏa mãn \(\left(2020^{2020}+1\right)⋮\left(n^3+2018n\right)\)

Ta có \(n^3+2018n=n^3-n+2019n=n\left(n-1\right)\left(n+1\right)+2019⋮3\)

Mặt khác \(2020^{2020}+1=\left(2019+1\right)^{2020}+1\) chia 3 dư 2

\(\Rightarrow\) vô lí

Vậy không tồn tại số nguyên n thỏa mãn yêu cầu bài toán

11 tháng 3 2021

Giả sử tồn tại n thoả mãn đề bài.

Dễ thấy \(2019^{2018}+1\) chẵn nên \(n^3+2018n\), suy ra n chẵn.

Do đó \(n^3+2018n⋮4\).

Mặt khác ta có \(2019^{2018}\equiv\left(-1\right)^{2018}\equiv1\left(mod4\right)\Rightarrow2019^{2018}+1\equiv2\left(mod4\right)\).

Điều này là vô lí vì VT chia hết cho 4 còn VP không chia hết cho 4.

Vậy không tồn tại n thoả mãn đề bài.

 

7 tháng 5 2023

Áp dụng tính chất sau \(\left(a-1\right)\left(a+1\right)=a^2-1\)(\(a\in Z\)) ta được:

\(\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n+2\right).\left[\left(n+1\right)\left(n+3\right)\right]=\left(n+2\right).\left[\left(n+2\right)^2-1\right]\)

Do \(n+2\) và \(\left(n+2\right)^2-1\) là hai số nguyên tố cùng nhau nên nếu \(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là số chính phương thì \(n+2\) và \(\left(n+2\right)^2-1\) cũng là các số chính phương

Do n là các số nguyên dương nên \(n+2\ge2\)

Với \(n+2\ge2\Rightarrow\left(n+2\right)^2-1\) không là số chính phương

\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)\) không là số chính phương

24 tháng 7 2020

Không mất tính tổng quát giả sử rằng \(\left|x\right|\ge\left|y\right|\Rightarrow x^2\ge y^2\)

\(\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\le\frac{1}{y^2}+\frac{1}{y^2}=\frac{2}{y^2}\Rightarrow y^2\le14\Rightarrow\left|y\right|\le3\)

Mặt khác áp dụng BĐT Cauchy Schwarz:

\(=\frac{1}{7}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}\Rightarrow x^2+y^2\ge28\Rightarrow x^2\ge14\Rightarrow\left|x\right|\ge3\)

Bạn thay y={1;2;3;-1;-2;-3} vào rùi tìm x nhá cái BĐT kia làm màu cho đẹp thui :3

26 tháng 6 2023

cái này toán 10 hay s v :(

26 tháng 6 2023

không phải là toán lớp 5 ạ