K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

    \(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)

\(=\frac{1-y}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}\)

\(=\frac{-x^2-x-1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\)

\(=\frac{\left(y^2-x^2\right)+y-x}{x^2y^2+x^2y+x^2+xy^2+xy+x+y^2+y+1}\)

\(=\frac{\left(y-x\right)\left(y+x\right)+y-x}{x^2y^2+x^2y+xy^2+x^2+xy+y^2+x+y+1}\)

\(=\frac{y-x+y-x}{x^2y^2+xy\left(x+y\right)+x\left(x+y\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+xy+x+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+x\left(y+1\right)+y^2+x+y+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+\left(1-y\right)\left(y+1\right)+y^2+\left(x+y\right)+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+1-y^2+y^2+1+1}\)

\(=\frac{2\left(y-x\right)}{x^2y^2+3}\)

NV
19 tháng 6 2020

b/ ĐKXĐ: ...

\(2x^3-2y^3+5x-5y=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x^2+2xy+2y^2\right)+5\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x^2+2xy+2y^2+5\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)^2+x^2+y^2+5\right]=0\)

\(\Leftrightarrow x=y\) (ngoặc sau luôn dương)

Thế vào pt dưới:

\(\frac{3x}{x^2+x+1}+\frac{5x}{x^2+3x+1}=2\)

Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:

\(\frac{3}{x+\frac{1}{x}+1}+\frac{5}{x+\frac{1}{x}+3}=2\)

Đặt \(x+\frac{1}{x}+1=t\)

\(\Rightarrow\frac{3}{t}+\frac{5}{t+2}=2\Leftrightarrow3\left(t+2\right)+5t=2t\left(t+2\right)\)

\(\Leftrightarrow2t^2-4t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}+1=-1\\x+\frac{1}{x}+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=0\\x^2-2x+1=0\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
19 tháng 6 2020

a/ ĐKXĐ: ...

\(2x-\frac{1}{y}=2y-\frac{1}{x}\Leftrightarrow\frac{2xy-1}{y}=\frac{2xy-1}{x}\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\2xy-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=y\\xy=\frac{1}{2}\end{matrix}\right.\)

TH1: \(x=y\Rightarrow6x^2=7x^2-8\Rightarrow x^2=8\Rightarrow...\)

TH2: \(xy=\frac{1}{2}\Rightarrow y=\frac{1}{2x}\)

\(\Rightarrow2\left(2x^2+\frac{1}{4x^2}\right)+4\left(x-\frac{1}{2x}\right)=\frac{7}{2}-8\)

\(\Leftrightarrow4\left(x^2+\frac{1}{4x^2}\right)+8\left(x-\frac{1}{2x}\right)+9+4x^2=0\)

Đặt \(x-\frac{1}{2x}=t\Rightarrow x^2+\frac{1}{4x^2}=t^2+1\)

\(\Rightarrow4\left(t^2+1\right)+8t+9+4x^2=0\)

\(\Leftrightarrow4\left(t+1\right)^2+4x^2+9=0\)

Vế trái luôn dương nên pt vô nghiệm

3 tháng 6 2019

Em thử ạ!Em không chắc đâu.Hơi quá sức em rồi

Ta có: \(VT=\Sigma\frac{x^3}{z+y+yz+1}=\Sigma\frac{x^3}{z+y+\frac{1}{x}+1}\)

\(=\Sigma\frac{x^4}{xz+xy+1+x}=\frac{x^4}{xy+xz+x+1}+\frac{y^4}{yz+xy+y+1}+\frac{z^4}{zx+yz+z+1}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel,suy ra:

\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)+2\left(xy+yz+zx\right)+3}\)

\(\ge\frac{\left(\frac{1}{3}\left(x+y+z\right)^2\right)^2}{\left(x+y+z\right)+\frac{2}{3}\left(x+y+z\right)^2+3}\) (áp dụng BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3};ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))

Đặt \(t=x+y+z\ge3\sqrt{xyz}=3\) Dấu "=" xảy ra khi x = y = z

Ta cần chứng minh: \(\frac{\frac{t^4}{9}}{\frac{2}{3}t^2+t+3}\ge\frac{3}{4}\Leftrightarrow\frac{t^4}{9\left(\frac{2}{3}t^2+t+3\right)}=\frac{t^4}{6t^2+9t+27}\ge\frac{3}{4}\)(\(t\ge3\))

Thật vậy,BĐT tương đương với: \(4t^4\ge18t^2+27t+81\)

\(\Leftrightarrow3t^4-18t^2-27t+t^4-81\ge0\)

Ta có: \(VT\ge3t^4-18t^2-27t+3^4-81\)

\(=3t^4-18t^2-27t\).Cần chứng minh\(3t^4-18t^2-27t\ge0\Leftrightarrow3t^4\ge18t^2+27t\)

Thật vậy,chia hai vế cho \(t\ge3\),ta cần chứng minh \(3t^3\ge18t+27\Leftrightarrow3t^3-18t-27\ge0\)

\(\Leftrightarrow3\left(t^3-27\right)-18\left(t-3\right)\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+27\right)-18\left(t-3\right)\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+9\right)\ge0\)

BĐT hiển nhiên đúng,do \(t\ge3\) và \(3t^2+9t+9=3\left(t+\frac{3}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)

Dấu "=" xảy ra khi t = 3 tức là \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)

Chứng minh hoàn tất

3 tháng 6 2019

Em sửa chút cho bài làm ngắn gọn hơn.

Khúc chứng minh: \(4t^4\ge18t^2+27t+81\)

\(\Leftrightarrow4t^4-18t^2-27t-81\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(4t^3+12t^2+18t+27\right)\ge0\)

BĐT hiển nhiên đúng do \(t\ge3\Rightarrow\hept{\begin{cases}t-3\ge0\\4t^3+12t^2+18t+27>0\end{cases}}\)

Còn khúc sau y chang :P Lúc làm rối quá nên không nghĩ ra ạ!

6 tháng 11 2018

\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

Chúc bạn học tốt ~ 

15 tháng 7 2020

Xem lại đề bài đi. Đó có phải là bài toán không?

15 tháng 7 2020

thieu de ban oi 

2 tháng 2 2020

\(x+y=1\)\(\Leftrightarrow\hept{\begin{cases}x-1=-y\\y-1=-x\end{cases}}\)

Ta có: \(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x}{\left(y-1\right)^3+3y\left(y-1\right)}-\frac{y}{\left(x-1\right)^3+3x\left(x-1\right)}\)

\(=\frac{x}{-x^3-3xy}-\frac{y}{-y^3-3xy}=\frac{x}{-x\left(x^2+3y\right)}-\frac{y}{-y\left(y^2+3x\right)}\)

\(=\frac{-1}{x^2+3y}+\frac{1}{y^2+3x}=\frac{-\left(y^2+3x\right)+\left(x^2+3y\right)}{\left(x^2+3y\right)\left(y^2+3x\right)}=\frac{-y^2-3x+x^2+3y}{x^2y^2+3x^3+3y^3+9xy}\)

\(=\frac{\left(x^2-y^2\right)-3\left(x-y\right)}{x^2y^2+3\left(x^3+y^3\right)+9xy}=\frac{\left(x-y\right)\left(x+y\right)-3\left(x-y\right)}{x^2y^2+3\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+9xy}\)

\(=\frac{\left(x-y\right)-3\left(x-y\right)}{x^2y^2+3\left(1-3xy\right)+9xy}=\frac{-2\left(x-y\right)}{x^2y^2+3-9xy+9xy}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

\(\Rightarrow\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)( đpcm )

30 tháng 3 2020

Ta có \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)

Xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)

<=> \(x^3\ge\left(2018^2-2.2018.x+x^2\right)\left(x-\frac{1009}{2}\right)\)

<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2018.2\right)+x\left(2018.1009+2018^2\right)-\frac{2018^2.1009}{2}\)

<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)

<=> \(\frac{9081}{2}\left(x^2-\frac{2.2018}{3}.x+\left(\frac{2018}{3}\right)^2\right)\ge0\)

<=> \(\frac{9081}{2}\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)

=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)

Khi đó \(VT\ge x-\frac{1009}{2}+y-\frac{1009}{2}+z-\frac{1009}{2}=2018-\frac{3}{2}.1009=\frac{1009}{2}\)(ĐPCM)

Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)

30 tháng 3 2020

Ta có : \(\frac{x^3}{\left(y+z\right)^2}=\frac{x^3}{\left(2018-x\right)^2}\)

xét \(\frac{x^3}{\left(2018-x\right)^2}\ge x-\frac{1009}{2}\)

<=> \(x^3\ge\left(x^2-2.2018.x+2018^2\right)\left(x-\frac{1009}{2}\right)\)

<=> \(x^3\ge x^3-x^2\left(\frac{1009}{2}+2.2018\right)+x\left(2018^2+1009.2018\right)-\frac{2018^2.1009}{2}\ge0\)

<=> \(\frac{9081}{2}x^2-6.1009^2.x+2018.1009^2\ge0\)

<=> \(\frac{9081}{2}.\left(x-\frac{2018}{3}\right)^2\ge0\)( luôn đúng)

=> \(\frac{x^3}{\left(y+z\right)^2}\ge x-\frac{1009}{2}\)

Khi đó \(P\ge x+y+z-\frac{3.1009}{2}=\frac{1009}{2}\)(ĐPCM)

Dấu bằng xảy ra khi \(x=y=z=\frac{2018}{3}\)