K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

Từ giả thiết ta suy ra

\(\dfrac{1}{a}+\dfrac{1}{b}+c=3\)

Đặt \(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};c\right)\Rightarrow x+y+z=3\)

\(VT=\dfrac{1}{\sqrt{xy+x+y}}+\dfrac{1}{\sqrt{yz+y+z}}+\dfrac{1}{\sqrt{xz+x+z}}\)

Ta chứng minh: \(\left(x+1+y\right)^2\ge3\left(xy+x+y\right)\)(Luôn đúng)

\(\Rightarrow VT\ge\dfrac{\sqrt{3}}{x+y+1}+\dfrac{\sqrt{3}}{y+z+1}+\dfrac{\sqrt{3}}{z+x+1}\ge\dfrac{9\sqrt{3}}{2\left(x+y+z\right)+3}=\sqrt{3}\)

25 tháng 8 2020

Dễ dàng dự đoán được dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)Nhận thấy các đại lượng trong căn và mẫu đồng chưa bậc nên suy nghĩ đầu tiên là đồng bậc. Để ý đến giả thiết a+b+c=1 ta thấy \(a^2+abc=a^2\left(a+b+c\right)+abc=a\left(a+b\right)\left(a+c\right)\)

\(c+ab=a\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\)

Hoàn toàn tương tự ta có \(b^2+abc=b\left(b+a\right)\left(b+c\right);c^2+abc=c\left(c+b\right)\left(c+a\right)\)

\(b+ac=\left(a+b\right)\left(b+c\right);a+bc=\left(a+b\right)\left(b+c\right)\)

Khi đó bất đẳng thức cần chứng minh trở thành

\(\frac{\sqrt{a\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(b+c\right)}+\frac{\sqrt{b\left(b+c\right)\left(b+a\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{\sqrt{c\left(c+a\right)\left(c+b\right)}}{\left(b+a\right)\left(b+c\right)}\le\frac{1}{2\sqrt{abc}}\)

hay \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(c+b\right)}+\frac{b\sqrt{ab\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+b\right)\left(b+c\right)}}{\left(c+b\right)\left(b+a\right)}\le\frac{1}{2\sqrt{abc}}\)

Quan sát bất đẳng thức trên ta liên tưởng đến bất đẳng thức Cauchy, để ý là

\(bc\left(a+b\right)\left(a+c\right)=c\left(a+b\right)\cdot b\left(a+c\right)=b\left(a+b\right)\cdot c\left(a+c\right)\)

Trong 2 cách viết trên ta chọn cách viết thứ nhất vì khi sử dụng bất đẳng thức Cauchy dạng \(2\sqrt{xy}\le x+y\)thì không tạo ra các đại lượng có chứa các bình phương. Khi đó áp dụng bất đẳng thức Cauchy ta được

\(\sqrt{bc\left(a+b\right)\left(a+c\right)}\le\frac{b\left(a+c\right)+c\left(a+b\right)}{2}=\frac{ab+2bc+ca}{2}\)

Áp dụng tương tự ta được

  \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(c+a\right)\left(c+b\right)}+\frac{b\sqrt{ac\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+c\right)\left(b+c\right)}}{\left(b+c\right)\left(b+a\right)}\)\(\le\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\le1\)

hay \(a\left(ab+2bc+ca\right)\left(a+b\right)+b\left(b+c\right)\left(ab+bc+2ca\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vế trái của bất đẳng thức là bậc bốn còn vế phải là bậc ba nên ta có thể đồng bậc là

\(a\left(ab+2bc+ca\right)+b\left(b+c\right)\left(ab+bc+2ac\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)

\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)\)

Triển khai và thu gọn ta được \(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)+a^2b^2+b^2c^2+c^2a^2+5\left(a^2bc+ab^2c+abc^2\right)\)

\(\le a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)+4\left(a^2bc+ba^2c+abc^2\right)\)

hay \(abc\left(a+b+c\right)\le a^2b^2+b^2c^2+c^2a^2\), đây là một đánh giá đúng

Dấu đẳng thức xảy ra tại \(a=b=c=\frac{1}{3}\)

1,

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)

23 tháng 1 2020

\(A=\frac{\frac{1}{2}a^2\left(\sqrt[3]{b}+\sqrt[3]{c}+1\right)\left[\left(\sqrt[3]{b}-\sqrt[3]{c}\right)^2+\left(\sqrt[3]{b}-1\right)^2+\left(\sqrt[3]{c}-1\right)^2\right]}{2\left(a+2\right)\left(a+\sqrt[3]{bc}\right)}\ge0\)

\(\Sigma_{cyc}\frac{a^2}{a+\sqrt[3]{bc}}=\Sigma_{cyc}A+\Sigma_{cyc}\frac{2\left(a-1\right)^2}{3\left(a+2\right)}+\frac{5}{6}\left(a+b+c\right)-1\ge\frac{5}{6}\left(a+b+c\right)-1=\frac{3}{2}\)

23 tháng 1 2020

Áp dụng bất đẳng thức cộng mẫu số 

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\)\(\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

Chứng minh rằng : \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)

\(\Leftrightarrow18\ge3\left(3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}\right)\)

\(\Leftrightarrow18\ge9+3\sqrt[3]{bc}+3\sqrt[3]{ca}+3\sqrt[3]{ab}\)

\(\Leftrightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}a+b+1\ge3\sqrt[3]{ab}\\b+c+1\ge3\sqrt[3]{bc}\\c+a+1\ge3\sqrt[3]{ca}\end{cases}}\)

\(\Rightarrow2\left(a+b+c\right)+3\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)

\(\Rightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\left(đpcm\right)\)

Vì \(\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\frac{3}{2}\)

Mà \(\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\Rightarrow\frac{a^2}{a+\sqrt[3]{bc}}+\frac{b^2}{b+\sqrt[3]{ca}}+\frac{c^2}{c+\sqrt[3]{ab}}\ge\frac{3}{2}\left(đpcm\right)\)

Chúc bạn học tốt !!!

12 tháng 9 2016

Ta có : \(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}=1\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\sqrt{abc}\)

Do đó : \(ab+bc+ac\ge\frac{abc}{3}\)

\(\Leftrightarrow3\left(ab+bc+ac\right)\ge\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\ge2\left(\sqrt{a^2bc}+\sqrt{b^2ac}+\sqrt{c^2ab}\right)\)

\(\Leftrightarrow a\left(\sqrt{b}-\sqrt{c}\right)^2+b\left(\sqrt{c}-\sqrt{a}\right)^2+c\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu được chứng minh

4 tháng 7 2017

\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(=\frac{a}{\sqrt{\left(ab+bc+ca\right)+a^2}}+\frac{b}{\sqrt{\left(ab+bc+ca\right)+b^2}}+\frac{c}{\sqrt{\left(ab+bc+ca\right)+c^2}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\le\frac{1}{2}.\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)