K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

Trần Thanh Phương, svtkvtm, tth, Lê Thảo, @Akai Haruma,

@Nguyễn Việt Lâm

15 tháng 8 2019

bach nhac lam bao giờ bạn cần ?

9 tháng 9 2015

Bài đẹp quá!

Ta kí hiệu \(S_a,S_b,S_c\) lần lượt là diện tích của các tam giác \(\Delta IBC,\Delta ICA,\Delta IAB\). Từ công thức tỉ số diện tích ta suy ra \(\frac{IA}{IM}=\frac{S_b+S_c}{S_a},\) tương tự cho 2 tỉ số còn lại. Thành thử ta cần chứng minh \(\sqrt{\frac{S_b+S_c}{S_a}}+\sqrt{\frac{S_c+S_a}{S_b}}+\sqrt{\frac{S_a+S_b}{S_a}}\ge3\sqrt{2}\)

Có nhiều cách xử lý cậu này: ví dụ theo bất đẳn thức Cauchy  \(\sqrt{\frac{S_b+S_c}{2S_a}}\ge\frac{2\left(S_b+S_c\right)}{2S_a+S_b+S_c}=\frac{2\left(S_b+S_c\right)^2}{2S_a\left(S_b+S_c\right)+\left(S_b+S_c\right)^2}\)

Tương tự cho 2 bất đẳng thức nữa rồi cộng lại ta sẽ được

\(\sqrt{\frac{S_b+S_c}{2S_a}}+\sqrt{\frac{S_c+S_a}{2S_b}}+\sqrt{\frac{S_a+S_b}{2S_a}}\ge\frac{8\left(S_a+S_b+S_c\right)^2}{4\left(S_aS_b+S_bS_c+S_cS_a\right)+2\left(S_a^2+S_b^2+S_c^2+S_aS_b+S_bS_c+S_cS_a\right)}\)

Từ bất đẳng thức quen thuộc \(S_a^2+S_b^2+S_c^2\ge S_aS_b+S_bS_c+S_cS_a\) ta suy ra

\(\frac{8\left(S_a+S_b+S_c\right)^2}{4\left(S_aS_b+S_bS_c+S_cS_a\right)+2\left(S_a^2+S_b^2+S_c^2+S_aS_b+S_bS_c+S_cS_a\right)}\ge3\)

Do đó ta có ĐPCM.

Đây là định lí ceva, bạn có thể tham khảo thêm các cách chứng minh khác trên mạng nếu cần.

undefined

 

25 tháng 7 2018

B A C O R Q P

Đặt \(S_{AOC}=x^2;S_{BOC}=y^2;S_{AOB}=z^2\) \(\left(x,y,z>0\right)\)

* Ta thấy tam giác AOB và BOP có chung đường cao kẻ từ B

\(\Rightarrow\dfrac{S_{AOB}}{S_{BOP}}=\dfrac{OA}{OP}\). Tương tự \(\dfrac{S_{AOC}}{S_{COP}}=\dfrac{OA}{OP}\)

\(\Rightarrow\dfrac{OA}{OP}=\dfrac{S_{AOB}}{S_{BOP}}=\dfrac{S_{AOC}}{S_{COP}}=\dfrac{S_{AOB}+S_{AOC}}{S_{BOP}+S_{COP}}=\dfrac{x^2+z^2}{y^2}\)

Tương tự \(\dfrac{OB}{OQ}=\dfrac{y^2+z^2}{x^2};\dfrac{OC}{OR}=\dfrac{x^2+y^2}{z^2}\)

* Áp dụng BĐT cau-chy ta có

\(\dfrac{x^2}{y^2}+\dfrac{z^2}{y^2}\ge2\sqrt{\dfrac{x^2z^2}{y^4}}=\dfrac{2xz}{y^2}\) .

Tương tự \(\dfrac{y^2+z^2}{x^2}\ge\dfrac{2yz}{x^2}\) ; \(\dfrac{x^2+y^2}{z^2}\ge\dfrac{2xy}{z^2}\)

\(\Rightarrow A=\dfrac{x^2+z^2}{y^2}.\dfrac{y^2+z^2}{x^2}.\dfrac{x^2+y^2}{z^2}\ge8\)

\(\sqrt{\dfrac{OA}{OP}}+\sqrt{\dfrac{OB}{OQ}}+\sqrt{\dfrac{OC}{OR}}\ge3\sqrt[3]{\sqrt{A}}=3\sqrt{2}\) - đpcm

10 tháng 7 2017

batngo

10 tháng 7 2017

A B C I M N P d O E

Qua A kẻ đường thẳng d // BC, \(d\cap CP=\left\{O\right\}\), \(d\cap BI=\left\{E\right\}\)

\(\Delta\)OAP và \(\Delta\)PBC có OA//BC nên \(\dfrac{PA}{PB}=\dfrac{OA}{BC}\)

\(\Delta\)AEN và \(\Delta\)BNC có AE//BC nên \(\dfrac{NA}{NC}=\dfrac{AE}{BC}\)

suy ra \(\dfrac{PA}{PB}+\dfrac{NA}{NC}=\dfrac{OA}{BC}+\dfrac{AE}{BC}=\dfrac{OE}{BC}\)(1)

\(\Delta\)AIE và \(\Delta\)BIC có AE//BC nên \(\dfrac{IA}{IM}=\dfrac{IE}{BC}\)

\(\Delta\)OIE và \(\Delta\)BIC có OE//BC nên \(\dfrac{IA}{IM}=\dfrac{OE}{BC}\)

suy ra \(\dfrac{IA}{AM}=\dfrac{OE}{BC}\)(2)

Từ (1) và (2) \(\Rightarrow\)\(\dfrac{IA}{IM}=\dfrac{PA}{PB}+\dfrac{NA}{NC}\) (dpcm)