K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}\)

\(2B=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}\right)\)

\(2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}\)

\(2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}\right)\)

\(B=1-\dfrac{1}{2^{99}}\)

\(B< 1\)

\(\Rightarrowđpcm\)

NV
18 tháng 9 2021

\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)

Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)

\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)

Cộng vế:

\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)

AH
Akai Haruma
Giáo viên
1 tháng 8 2018

Lời giải:

\(A=\frac{1}{2}+(\frac{1}{2})^2+(\frac{1}{2})^3+...+(\frac{1}{2})^{98}+(\frac{1}{2})^{99}\)

\(\Rightarrow 2A=1+\frac{1}{2}+(\frac{1}{2})^2+...+(\frac{1}{2})^{97}+(\frac{1}{2})^{98}\)

Trừ theo vế:

\(2A-A=1-(\frac{1}{2})^{99}\)

\(A=1-(\frac{1}{2})^{99}< 1\)

Ta có đpcm.

2 tháng 9 2023

Để chứng minh bất đẳng thức (a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] ≥ 9/2, ta sẽ sử dụng phương pháp chứng minh bất đẳng thức bằng phương pháp chứng minh định lý hình học.

Giả sử a, b, c là các số thực và (a, b, c) không phải là (0, 0, 0). Ta có thể viết lại bất đẳng thức trên dưới dạng:

(a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] - 9/2 ≥ 0

Mở rộng và rút gọn biểu thức ta có:

2a^4 + 2b^4 + 2c^4 + 4a^2b^2 + 4b^2c^2 + 4c^2a^2 - 2a^3b - 2ab^3 - 2b^3c - 2bc^3 - 2c^3a - 2ca^3 - 9/2 ≥ 0

Đặt x = a^2, y = b^2, z = c^2, ta có:

2x^2 + 2y^2 + 2z^2 + 4xy + 4yz + 4zx - 2x^(3/2)√y - 2x√y^(3/2) - 2y^(3/2)√z - 2yz^(3/2) - 2z^(3/2)√x - 2zx^(3/2) - 9/2 ≥ 0

Đặt t = √x, u = √y, v = √z, ta có:

2t^4 + 2u^4 + 2v^4 + 4t^2u^2 + 4u^2v^2 + 4v^2t^2 - 2t^3u - 2tu^3 - 2u^3v - 2uv^3 - 2v^3t - 2vt^3 - 9/2 ≥ 0

Nhận thấy rằng biểu thức trên có thể viết dưới dạng tổng của các bình phương:

(t^2 + u^2 + v^2 - tu - uv - vt)^2 + (t^2 - u^2)^2 + (u^2 - v^2)^2 + (v^2 - t^2)^2 ≥ 0

Vì mọi số thực bình phương đều không âm, nên bất đẳng thức trên luôn đúng. Từ đó, ta có chứng minh rằng (a^2 + b^2 + c^2)[(a-b)^2 + (b-c)^2 + (c-a)^2] ≥ 9/2.

18 tháng 6 2023

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) khi đó thu được \(xyz=1\)

Ta có:

\(\dfrac{1}{a^2\left(b+c\right)}=\dfrac{x^2}{\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{x^2yz}{y+z}=\dfrac{x}{y+z}\)

BĐT cần chứng minh được viết lại thành:\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{z+x}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{1}{z+x}+\dfrac{1}{x+y}\right)\ge\dfrac{9}{2}\)

Đánh giá cuối cùng đúng theo BĐT Cauchy

Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi  a = b = c = 1.

18 tháng 6 2023

Cảm ơn bạn nhé!

NV
15 tháng 3 2022

\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)

\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)

Cộng vế:

\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)

\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

14 tháng 3 2022

chết đăng nhầm sogy nha

27 tháng 7 2018

ta có : \(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow\dfrac{1}{2}A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{100}\)

\(\Rightarrow\dfrac{1}{2}A=A-\dfrac{1}{2}A=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^{100}\) \(\Rightarrow A=2.\left(\dfrac{1}{2}A\right)=1-2\left(\dfrac{1}{2}\right)^{100}< 1\left(đpcm\right)\)

27 tháng 7 2018

\(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow2A=2\cdot\left[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\right]\)

\(2A=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)

\(\Rightarrow A=2A-A=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{98}-\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^3-...-\left(\dfrac{1}{2}\right)^{99}\)

\(A=1-\left(\dfrac{1}{2}\right)^{99}< 1\left(đpcm\right)\)

\(A=\dfrac{\left(3+\dfrac{2}{15}+\dfrac{1}{5}\right):\dfrac{5}{2}}{\left(5+\dfrac{3}{7}-2-\dfrac{1}{4}\right):\left(4+\dfrac{43}{56}\right)}\)

\(=\dfrac{\dfrac{10}{3}\cdot\dfrac{2}{5}}{\dfrac{89}{28}:\dfrac{267}{56}}=\dfrac{4}{3}:\dfrac{2}{3}=2\)

\(B=\dfrac{\dfrac{6}{5}:\left(\dfrac{6}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{8}{25}+\dfrac{2}{25}}=\dfrac{\dfrac{6}{5}:\dfrac{3}{2}}{\dfrac{2}{5}}=2\)

Do đó: A=B

NV
20 tháng 1 2019

Nhìn qua đã biết là đề sai rồi bạn

Cho \(a,b,c\) các giá trị lớn ví dụ \(a=b=c=2\) là thấy sai ngay