K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

Sửa đề: \(A=xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Áp dụng BĐT AM-GM ta có:

\(xyz\le\left(\dfrac{x+y+z}{3}\right)^3=\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{27}\)

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\left(\dfrac{x+y+y+z+z+x}{3}\right)^3\)

\(=\left(\dfrac{2\left(x+y+z\right)}{3}\right)^3=\left(\dfrac{2}{3}\right)^3=\dfrac{8}{27}\)

Nhân theo vế 2 BĐT trên ta có:

\(A\le\dfrac{1}{27}\cdot\dfrac{8}{27}=\dfrac{8}{729}\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Áp dụng bđt Cô si cho 3 số không âm ta được:

1 = x + y + z \(\ge3.\sqrt[3]{xyz}\) (*)

Do đó, 2 = (x + y) + (y + z) + (z + x) \(\ge3.\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (**)

Dễ thấy 2 vế của (*) và (**) đều không âm nên nhân từng vế của chúng ta được: 2 \(\ge9.\sqrt[3]{A}\)

\(\Rightarrow A\le\left(\frac{2}{9}\right)^3\)

Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)

Vậy ...

 

 

 

7 tháng 11 2021

\(A=\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)\)

\(áp\) \(dụng\) \(bđt:\) \(\)\(AM-GM:a+b\ge2\sqrt{ab}\Leftrightarrow\sqrt{ab}\le\dfrac{a+b}{2}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\)

\(\Rightarrow A^2=\left(x+y-z\right)^2\left(y+z-x\right)^2\left(z+x-y^2\right)=\left(x+y-z\right)\left(y+z-x\right)\left(y+z-x\right)\left(z+x-y\right)\left(x+y-z\right)\left(z+x-y\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+y-z\right)\left(y+z-x\right)\le\dfrac{\left(x+y-z+y+z-x\right)^2}{4}\le\dfrac{4y^2}{4}\le y^2\\\left(y+z-x\right)\left(z+x-y\right)\le\dfrac{\left(y+z-x+z+x-y\right)^2}{4}\le z^2\\\left(x+y-z\right)\left(z+x-y\right)\le\dfrac{\left(x+y-z+z+x-y\right)^2}{4}\le x^2\\\end{matrix}\right.\)

\(\)\(\Rightarrow A^2\le x^2y^2z^2\le\left(xyz\right)^2\Rightarrow A\le xyz\)

 

 

1 tháng 9 2021

Chắc dùng Mincowski

28 tháng 10 2020

a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)

Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)

Vật bất đẳng thức được chứng minh

Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)

10 tháng 2 2023

không biết :))))