K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

Áp dụng BĐT cosi với 2 số x,y > 0

Ta có: \(\frac{x+y}{2}\ge\sqrt{xy}\Leftrightarrow a\ge\sqrt{xy}\)

Áp dụng BĐT cosi với 2 số không âm \(\frac{1}{x},\frac{1}{y}\)

ta có: \(\frac{\frac{1}{x}+\frac{1}{y}}{2}\ge\sqrt{\frac{1}{x}.\frac{1}{y}}\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{1}{\sqrt{xy}}\left(1\right)\)

Tiếp tục xét: \(\frac{2}{\sqrt{xy}}\ge\frac{2}{a}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{2}{a}\)

A đạt GTNN khi \(\frac{1}{x}=\frac{1}{y}\Leftrightarrow x=y=a\)

20 tháng 9 2018

Áp dụng BDT BU-nhi-a mo rong, ta có:

A=\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}\)

Do \(x+y=2a\)nen:

A\(\ge\frac{4}{2a}\)

\(\Leftrightarrow A\ge\frac{2}{a}\)

Dau bang xay ra khi : x=y=a

8 tháng 5 2019

Áp dụng bất đẳng thức Cô - si vào 2 số dương \(x^2,\frac{1}{x^2}\)ta có:
\(x^2+\frac{1}{x^2}\ge2\sqrt{x^2.\frac{1}{x^2}}=2\)\(\left(1\right)\)

Áp dụng bất đẳng thức Cô - si vào hai số dương \(y^2,\frac{1}{y^2}\)ta có :

\(y^2+\frac{1}{y^2}\ge2\sqrt{y^2.\frac{1}{y^2}}=2\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\ge4\)

\(\Rightarrow\)\(A_{min}=4\Leftrightarrow x=y=1\)

8 tháng 5 2019

bạn ơi x+y<=1 mà bạn tìm ra x+y=2 rồi

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

20 tháng 7 2017

Ta có :

\(B=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{2a}=\frac{2}{a}\)

Dấu "=" xảy ra <=> \(x=y=a\)

Vậy \(B_{min}=\frac{2}{a}\) tại \(x=y=a\)

9 tháng 5 2020

\(\sqrt{xy}\le\frac{x+y}{2}=\frac{2a}{2}=a\Rightarrow xy\le a^2\)

Ta có : \(A=\frac{x+y}{xy}\ge\frac{2a}{a^2}=\frac{a}{2}\)

Dấu "=" xảy ra khi x = y = a

vậy ....

18 tháng 4 2019

Ta chứng minh các bất đẳng thức:

\(x+y\ge2\sqrt{xy}\Leftrightarrow2\sqrt{xy}\le1\Leftrightarrow\sqrt{xy}\le\frac{1}{2}\)

\(x+y\ge2\sqrt{xy}\Leftrightarrow2x+2y\ge x+y+2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\le2\left(x+y\right)=2\Rightarrow\sqrt{x}+\sqrt{y}\le\sqrt{2}\)

\(\left[\left(\frac{x}{\sqrt{x\sqrt{y}}}\right)^2+\left(\frac{y}{\sqrt{y\sqrt{x}}}\right)^2\right]\left(\sqrt{x\sqrt{y}}^2+\sqrt{y\sqrt{x}}^2\right)\ge\left(x+y\right)^2\) (Bunyakovski)

\(\Leftrightarrow\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\ge\frac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}\)

Ta có:

\(\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\)

\(\ge\frac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\frac{1}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\ge\frac{1}{\frac{1}{2}\cdot\sqrt{2}}=\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{x}{x\sqrt{y}}=\frac{y}{y\sqrt{x}}\\x=y\end{cases}\Leftrightarrow x=y}\)

x+y=1 <=> x=y=1/2

Vậy GTNN của biểu thức trên là \(\sqrt{2}\)<=> x=y=1/2

Hơi dài tí, tại chỉ suy nghĩ như thế thôi

19 tháng 4 2019

Em cảm ơn Le Hong Phuc ạ!

7 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(1+\frac{1}{x}+1+\frac{1}{y}\right)^2}{2}=\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)(1)

Lại có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{1}=4\)(2)

Từ (1) và (2) => \(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\ge\frac{\left(2+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra <=> x = y = 1/2

Vậy MinA = 18 

6 tháng 11 2017

a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3

MInA=3<=>x=y=z=1

6 tháng 11 2017

b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)