K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)

\(=\left(a-b+b-c\right)\left[\left(a-b\right)^2-\left(a-b\right)\left(b-c\right)+\left(b-c\right)^2\right]+\left(c-a\right)^3\)

\(=\left(a-c\right)\left[\left(a-b\right)^2-\left(a-b\right)\left(b-c\right)+\left(b-c\right)^2\right]-\left(a-c\right)^3\)

\(=\left(a-c\right)\left[\left(a-b\right)^2-\left(a-b\right)\left(b-c\right)+\left(b-c\right)^2-\left(a-c\right)^2\right]\)

\(=\left(a-c\right)\left[\left(a-b\right)\left(a-b-b+c\right)+\left(b-c+a-c\right)\left(b-c-a+c\right)\right]\)

\(=\left(a-c\right)\left[\left(a-b\right)\left(a-2b+c\right)+\left(a+b-2c\right)\left(b-a\right)\right]\)

\(=\left(a-c\right)\left[\left(a-b\right)\left(a-2b+c\right)-\left(a+b-2c\right)\left(a-b\right)\right]\)

\(=\left(a-c\right)\left(a-b\right)\left(a-2b+c-a-b+2c\right)\)

\(=-\left(c-a\right)\left(a-b\right)\left(-3b+3c\right)\)

\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Vì a > b > c nên a - b > 0 ; b - c > 0 ; c - a < 0

Do đó \(3\left(a-b\right)\left(b-c\right)\left(c-a\right)< 0\) hay \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3< 0\) (đpcm)

Xét \(a^3+b^3+c^3-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà \(a+b+c=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\) 

2 tháng 7 2017

BĐT sai khi a=b=c=2 
Thử Đại thấy sai vậy bạn coi lại đề , thân! :vv

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:

Áp dụng BĐT Cô-si: 

$a+b+c\geq 3\sqrt[3]{abc}=3(1)$
Tiếp tục áp dụng BĐT Cô-si:

$a^3+a\geq 2a^2$

$b^3+b\geq 2b^2$

$c^3+c\geq 2c^2$

$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)$

Lại có:

$a^2+1\geq 2a$

$b^2+1\geq 2b$

$c^2+1\geq 2c$

$\Rightarrow a^2+b^2+c^2\geq 2(a+b+c)-3=(a+b+c)+(a+b+c)-3$

$\geq a+b+c+3-3=a+b+c(2)$

$\Rightarrow a^3+b^3+c^3\geq 2(a^2+b^2+c^2)-(a+b+c)\geq a^2+b^2+c^2(3)$

Từ $(1); (2); (3)$ ta có đpcm.

 

27 tháng 8 2015

 thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có : 

a^3+b^3+c^3-3abc=0 

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0 

<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0 

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0 

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)... 

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0 

luôn đúng do a+b+c=0

9 tháng 7 2018

P/s : 

Đề thiếu rồi bạn ơi : 

~

14 tháng 7 2015

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+....mk phải ăn cơm rồi

8 tháng 1 2022

Từ a+b+c=0 => b+c=-a 

Theo đề ra ta có a+ b3 + c= 0 

=> a3 + (b+c)(b2 - bc + c2 )=0 

<=> a3- a[(b + c )2 -3bc]= 0 

<=> a3- [( -a )2 - 3bc] = 0 

<=> a3 -  a3 +3bc = 0 

<=> 3bc= 0 

<=> a =0 hoặc b=0 hoặc c=0 ( đpcm) 

cho mik điểm nha bạn ơiii

 

NV
6 tháng 3 2021

\(VT=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

6 tháng 3 2021

Ta chứng minh bđt phụ \(x^2+y^2+z^2\ge xy+yz+zx\forall x,y,z>0\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\left(1\right)\)

Áp dụng bđt Cô-si vào các số a,b,c dương :

\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}\cdot ab}=2\sqrt{a^4}=2a^2\)

Chứng minh tương tự ta được:

\(\dfrac{b^3}{c}+bc\ge2b^2;\dfrac{c^3}{a}+ca\ge2c^2\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\ge2ab+2bc+2ca\) (do áp dụng (1)) \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)

Dấu = xảy ra \(\Leftrightarrow a=b=c\)