K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

\(\frac{-2}{3}-\frac{5}{4}-x=\frac{-13}{3}\)

\(\frac{-23}{12}-x=\frac{-13}{3}\)

\(x=\frac{-23}{12}-\frac{-13}{3}\)

\(x=\frac{29}{12}\)

CHÚC BN HỌC TỐT!!!

4 tháng 3 2018

-2/3 - 5/4 - x = - 13/3

- x = -13/3 + 2/3 + 5/4

- x = - 52/12 + 8/12 + 15/12

- x = - 35/12

Vậy x = - 35/12

a: =16-2+91=14+91=105

b: =9*5+8*10-27=45+53=98

c: =32+65-3*8=8+65=73

d; \(=5^3-10^2=125-100=25\)

e: \(=4^2-3^2+1=8\)

f: =9*16-16*8-8+16*4

=16(9-8+4)-8

=16*5-8

=72

7 tháng 7 2023

a) \(2^4-50:25+13\cdot7\)

\(=2^4-2+91\)

\(=16-2+91\)

\(=14+91\)

\(=105\)

b) \(3^2\cdot5+2^3\cdot10-3^4:3\)

\(=9\cdot5+8\cdot10-3^3\)

\(=45+80-27\)

\(=98\)

c) \(2^5+5\cdot13-3\cdot2^3\)

\(=32+65-3\cdot8\)

\(=32+65-24\)

\(=73\)

d) \(5^{13}:5^{10}-5^2\cdot2^2\)

\(=5^{13-10}-\left(5\cdot2\right)^2\)

\(=5^3-10^2\)

\(=125-100\)

\(=25\)

e) \(4^5:4^3-3^9:3^7+5^0\)

\(=4^{5-3}-3^{9-7}+1\)

\(=4^2-3^2+1\)

\(=16-9+1\)

\(=8\)

f) \(3^2\cdot2^4-2^3\cdot4^2-2^3\cdot5^0+4^2\cdot2^2\)

\(=3^2\cdot4^2-2^3\cdot4^2-2^3\cdot1+4^2\cdot2^2\)

\(=4^2\cdot\left(3^2-2^3+2^2\right)-2^3\)

\(=4^2\cdot\left(9-8+4\right)-8\)

\(=16\cdot5-8\)

\(=72\)

23 tháng 1 2020

                                                                Bài giải

a, \(\frac{4}{5}-\frac{2}{3}+\frac{1}{5}-\frac{1}{3}\)

\(=\left(\frac{4}{5}+\frac{1}{5}\right)-\left(\frac{2}{3}+\frac{1}{3}\right)=1-1=0\)

b, \(\frac{2}{5}\text{ x }\frac{7}{4}-\frac{2}{5}\text{ x }\frac{3}{7}\)

\(=\frac{2}{5}\text{ x }\left(\frac{7}{4}-\frac{3}{7}\right)=\frac{2}{5}\text{ x }\frac{37}{28}=\frac{37}{70}\)

c, \(\frac{13}{4}\text{ x }\frac{2}{3}\text{ x }\frac{4}{13}\text{ x }\frac{3}{12}=\frac{13\text{ x }2\text{ x }4\text{ x }3}{4\text{ x }3\text{ x }13\text{ x }12}=\frac{1}{6}\)

d,  \(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)

\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)

\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)

\(=1+1+1\)

\(=3\)

e, \(\frac{2}{5}+\frac{6}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)

\(=\frac{2}{5}+\frac{2}{3}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)

\(=\frac{1}{5}\left(2+3\right)+\frac{1}{3}\left(2+1\right)+\frac{1}{4}\left(3+1\right)\)

\(=\frac{1}{5}\cdot5+\frac{1}{3}\cdot3+\frac{1}{4}\cdot4\)

\(=1+1+1\)

\(=3\)

23 tháng 1 2020

a, \(\frac{4}{5}-\frac{2}{3}+\frac{1}{5}-\frac{1}{3}\)

\(=\left(\frac{4}{5}+\frac{1}{5}\right)-\left(\frac{2}{3}+\frac{1}{3}\right)=1-1=0\)

b, \(\frac{2}{5}\text{ x }\frac{7}{4}-\frac{2}{5}\text{ x }\frac{3}{7}\)

\(=\frac{2}{5}\text{ x }\left(\frac{7}{4}-\frac{3}{7}\right)=\frac{2}{5}\text{ x }\frac{37}{28}=\frac{37}{70}\)

c, \(\frac{13}{4}\text{ x }\frac{2}{3}\text{ x }\frac{4}{13}\text{ x }\frac{3}{12}=\frac{13\text{ x }2\text{ x }4\text{ x }3}{4\text{ x }3\text{ x }13\text{ x }12}=\frac{1}{6}\)

d,  \(\frac{75}{100}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)

\(=\frac{3}{4}+\frac{18}{21}+\frac{19}{32}+\frac{1}{4}+\frac{3}{21}+\frac{13}{32}\)

\(=\left(\frac{3}{4}+\frac{1}{4}\right)+\left(\frac{18}{21}+\frac{3}{21}\right)+\left(\frac{19}{32}+\frac{13}{32}\right)\)

\(=1+1+1\)

\(=3\)

e, \(\frac{2}{5}+\frac{6}{9}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)

\(=\frac{2}{5}+\frac{2}{3}+\frac{3}{4}+\frac{3}{5}+\frac{1}{3}+\frac{1}{4}\)

\(=\frac{1}{5}\left(2+3\right)+\frac{1}{3}\left(2+1\right)+\frac{1}{4}\left(3+1\right)\)

\(=\frac{1}{5}\cdot5+\frac{1}{3}\cdot3+\frac{1}{4}\cdot4\)

\(=1+1+1\)

\(=3\)

18 tháng 4 2023

\(1,-\dfrac{4}{7}+\dfrac{2}{3}\times\dfrac{-9}{14}\)

\(=\dfrac{-4}{7}+\dfrac{-18}{42}\)

\(=\dfrac{-4\times6}{7\times6}+\dfrac{-18}{42}\)

\(=\dfrac{-20}{42}+\dfrac{-18}{42}\)

\(=-\dfrac{38}{42}\)

\(=-\dfrac{19}{21}\)

\(2,\dfrac{17}{13}-\left(\dfrac{4}{13}-11\right)\)

\(=\dfrac{17}{13}-\dfrac{4}{13}+11\)

\(=\dfrac{13}{13}+11\)

\(=1+11\)

\(=12\)

\(3,8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\)

\(=\dfrac{58}{7}-\left(\dfrac{31}{9}+\dfrac{30}{7}\right)\)

\(=\dfrac{58}{7}-\dfrac{31}{9}-\dfrac{30}{7}\)

\(=\dfrac{58}{7}-\dfrac{30}{7}-\dfrac{31}{9}\)

\(=\dfrac{28}{7}-\dfrac{31}{9}\)

\(=\dfrac{28\times9}{7\times9}-\dfrac{31\times7}{9\times7}\)

\(=\dfrac{252}{63}-\dfrac{217}{63}\)

\(=\dfrac{35}{63}\)

\(=\dfrac{5}{9}\)

\(5,\left(\dfrac{2}{3}-1\dfrac{1}{2}\right):\dfrac{4}{3}+\dfrac{1}{2}\)

\(=\left(\dfrac{2}{3}-\dfrac{3}{2}\right):\dfrac{4}{3}+\dfrac{1}{2}\)

\(=\left(\dfrac{2\times2}{3\times2}-\dfrac{3\times3}{2\times3}\right):\dfrac{4}{3}+\dfrac{1}{2}\)

\(=\left(\dfrac{4}{6}-\dfrac{9}{6}\right):\dfrac{4}{3}+\dfrac{1}{2}\)

\(=\dfrac{-5}{6}:\dfrac{4}{3}+\dfrac{1}{2}\)

\(=\dfrac{-5}{6}\times\dfrac{3}{4}+\dfrac{1}{2}\)

\(=\dfrac{-15}{24}+\dfrac{1}{2}\)

\(=\dfrac{-15}{24}+\dfrac{1\times12}{2\times12}\)

\(=\dfrac{-15}{24}+\dfrac{12}{24}\)

\(=\dfrac{-3}{24}\)

\(=-\dfrac{1}{8}\)

\(6,\dfrac{-5}{13}+\dfrac{2}{5}+\dfrac{-8}{13}+\dfrac{3}{5}-\dfrac{3}{7}\)

\(=\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)+\left(\dfrac{2}{5}+\dfrac{3}{5}\right)-\dfrac{3}{7}\)

\(=\dfrac{-13}{13}+\dfrac{5}{5}-\dfrac{3}{7}\)

\(=-1+1-\dfrac{3}{7}\)

\(=-\dfrac{3}{7}\)

\(7,\dfrac{6}{5}\times\dfrac{3}{7}+\dfrac{6}{5}:\dfrac{7}{10}+\dfrac{6}{5}\)

\(=\dfrac{6}{5}\times\dfrac{3}{7}+\dfrac{6}{5}\times\dfrac{10}{7}+\dfrac{6}{5}\)

\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+1\right)\)

\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+\dfrac{1\times7}{1\times7}\right)\)

\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+\dfrac{7}{7}\right)\)

\(=\dfrac{6}{5}\times\dfrac{20}{7}\)

\(=\dfrac{120}{35}\)

\(=\dfrac{24}{7}\)

 

18 tháng 12 2022

=>125(3x+2):13=1000:13

=>125(3x+2)=1000

=>3x+2=8

=>x=2

a: 2x-3/2+3/4=-4

=>2x-3/4=-4

=>2x=-13/4

hay x=-13/8

b: \(\left(-\dfrac{2}{3}x-\dfrac{3}{5}\right)\cdot\left(\dfrac{-3}{2}-\dfrac{10}{3}\right)=\dfrac{2}{5}\)

\(\Leftrightarrow-\dfrac{2}{3}x-\dfrac{3}{5}=\dfrac{2}{5}:\dfrac{-29}{6}=\dfrac{-2}{5}\cdot\dfrac{6}{29}=\dfrac{-12}{145}\)

=>2/3x+3/5=12/145

=>2/3x=-15/29

hay x=-45/58

c: \(\dfrac{x}{2}-\left(\dfrac{3}{5}x-\dfrac{13}{5}\right)=-\left(\dfrac{7}{10}x+\dfrac{7}{5}\right)\)

=>1/2x-3/5x+13/5=-7/10x-7/5

=>-1/10x+7/10x=-7/5-13/5

=>3/5x=-2

hay x=-2:3/5=-10/3

7 tháng 8 2021

Câu 13 :

\(\left(-\frac{1}{4}+\frac{5}{8}\right)+-\frac{3}{5}\)

\(=\frac{3}{8}-\frac{-3}{5}\)

\(=\frac{39}{40}\)

Câu 14 :

\(M=\frac{5}{9}.\frac{7}{13}+\frac{5}{9}.\frac{9}{13}-\frac{5}{9}.\frac{3}{13}\)

\(=\frac{5}{9}.\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)\)

\(=\frac{5}{9}.1=\frac{5}{9}\)

Câu 15 :

\(E=\left(-\frac{3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)

\(E=\left(-\frac{3}{4}+\frac{2}{5}+\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)

\(E=0\)

Câu 16 :

\(H=\frac{7}{8}:\left(\frac{2}{9}-\frac{1}{8}\right)+\frac{7}{8}:\left(\frac{1}{36}-\frac{5}{12}\right)\)

\(=\frac{7}{8}:\left(\frac{2}{9}-\frac{1}{8}+\frac{1}{36}-\frac{5}{12}\right)\)

\(=\frac{7}{8}:\frac{-7}{24}=-3\)

7 tháng 8 2021

huhuhuhuhuhuhuhuhuhuhuhuhu giúp mk đi 

Plssssssssssssssssssssssssssssssssssssssssssssss

1) Ta có: \(\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{7}{25}\cdot\dfrac{5}{7}\right)\)

\(=\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{1}{5}\right)\)

=0

2) Ta có: \(\dfrac{8}{17}\cdot\dfrac{4}{15}+\dfrac{8}{17}\cdot\dfrac{22}{15}-\dfrac{8}{15}\cdot\dfrac{9}{17}\)

\(=\dfrac{8}{17}\left(\dfrac{4}{15}+\dfrac{22}{15}-\dfrac{9}{15}\right)\)

\(=\dfrac{8}{17}\cdot\dfrac{15}{15}=\dfrac{8}{17}\)

3) Ta có: \(\dfrac{2021}{2}\cdot\dfrac{1}{3}+\dfrac{4042}{4}\cdot\dfrac{1}{5}+\dfrac{6063}{3}\cdot\dfrac{22}{15}\)

\(=\dfrac{2021}{2}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)+2021\cdot\dfrac{22}{15}\)

\(=\dfrac{2021}{2}\cdot\dfrac{8}{15}+\dfrac{2021}{2}\cdot\dfrac{44}{15}\)

\(=\dfrac{2021}{2}\cdot\dfrac{52}{15}\)

\(=\dfrac{52546}{15}\)

4) Ta có: \(\dfrac{4}{7}\cdot\dfrac{2}{13}+\dfrac{8}{13}:\dfrac{7}{4}+\dfrac{4}{7}:\dfrac{13}{2}+\dfrac{4}{7}\cdot\dfrac{1}{13}\)

\(=\dfrac{4}{7}\left(\dfrac{2}{13}+\dfrac{8}{13}+\dfrac{2}{13}+\dfrac{1}{13}\right)\)

\(=\dfrac{4}{7}\)

2 tháng 7 2021

cảm ơn nhé

vui

1 tháng 7 2023

a

=> \(x=\dfrac{2}{7}:\dfrac{2}{3}=\dfrac{2.3}{2.7}=\dfrac{3}{7}\)

b

=> \(x=\dfrac{2}{5}:\dfrac{3}{5}=\dfrac{2.5}{3.5}=\dfrac{2}{3}\)

c

=> \(x=\dfrac{13}{7}.\dfrac{8}{13}=\dfrac{13.8}{7.13}=\dfrac{8}{7}\)

d

=> \(x=\dfrac{3}{2}:\dfrac{7}{4}=\dfrac{3.2.2}{2.7}=\dfrac{6}{7}\)

a: 2/3*x=2/7

=>x=2/7:2/3=3/7

b: x*3/5=2/5

=>x=2/5:3/5=2/5*5/3=10/15=2/3

c: x:8/13=13/7

=>x=13/7*8/13=8/7

d: 3/2:x=7/4

=>x=3/2:7/4=3/2*4/7=12/14=6/7

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN.