K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

a) Thu gọn biểu thức M = 6 a 5   +   24 a 4   +   19 a 3   +   3 a 2 .

Thay a = -2. Ta tính được M = 52.

M = 3 . ( − 2 ) 2 − 2 . ( − 2 ) 2 − 2 . ( − 2 ) − 1 3 [ − ( − 2 ) − 3 ] = 52 .

b) Thu gọn biểu thức N =  125 x 3   –   8 y 3

Thay x = 1 5  và y = 1 2 vào biểu thức N.

N = 25 . 1 5 2 + 10 . 1 5 . 1 2 + 4 . 1 2 2 5 . 1 5 − 2 . 1 2 = 0 .  

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Thay giá trị \(a = 2\), \(b =  - 3\) vào biểu thức đã cho, ta có:

\(M = 2(a + b) = 2.(2 + ( - 3)) = 2.(2 - 3) = 2.( - 1) =  - 2\).

b) Thay giá trị \(x =  - 2\), \(y =  - 1\), \(z = 4\) vào biểu thức đã cho, ta có:

\(N =  - 3xyz = ( - 3). (- 2). (- 1).4 = 6. (- 1).4 = ( - 6).4 =  - 24\).

c) Thay giá trị \(x =  - 1\); \(y =  - 3\) vào biểu thức đã cho, ta có:

\(P =  - 5{x^3}{y^2} + 1 =  - 5.{( - 1)^3}.{( - 3)^2} + 1 = (- 5). (- 1).9 + 1 = 5.9 + 1 = 45 + 1 = 46\).

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Thay \(a =  - 4,b = 18\)vào đa thức ta có:

\(A =  - 5a - b - 20 =  - 5. - 4 - 18 - 20 =  - 18\).

b) Thay \(x =  - 1,y = 3,z =  - 2\)vào đa thức ta có:

\(B =  - 8xyz + 2xy + 16y =  - 8. - 1.3. - 2 + 2. - 1.3 + 16.3 =  - 48 - 6 + 48 =  - 6\).

c) Thay \(x =  - 2,y =  - 3\)vào đa thức ta có:

\(C =  - {x^{2021}}{y^2} + 9{x^{2021}} =  - {( - 1)^{2021}}.{( - 3)^2} + 9.{( - 1)^{2021}} =  - ( - 1).9 + 9.( - 1) = 9 + ( - 9) = 0\). 

\(A=\dfrac{7}{3}+\dfrac{5}{7}+\dfrac{2}{3}-\dfrac{7}{12}+\dfrac{5}{2}=3+\dfrac{221}{84}=\dfrac{473}{84}\)

a: \(A=\dfrac{x^2+4x+4+4x^2-x^2+4x-4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{x\left(x^2+x+2\right)}\)

\(=\dfrac{4x^2+8x}{\left(x+2\right)}\cdot\dfrac{1}{x\left(x^2+x+2\right)}=\dfrac{4}{x^2+x+2}\)

|x+3|=5

=>x=2(loại) hoặc x=-8(nhận)

Khi x=-8 thì \(A=\dfrac{4}{64-8+2}=\dfrac{4}{58}=\dfrac{2}{29}\)

b: A nguyên

=>x^2+x+2 thuộc {1;-1;2;-2;4;-4}

=>x^2+x+2=2 hoặc x^2+x+2=4

=>x^2+x-2=0 hoặc x(x+1)=0

=>\(x\in\left\{1;0;-1\right\}\)

19 tháng 2 2022

a, \(A=\left(x+2y\right)^2-x+2y\)

Thay x = 2 ; y = -1 ta được 

\(A=\left(2-2\right)^2-2-2=-4\)

b, Ta có \(\left(x^2+4>0\right)\left(x-1\right)=0\Leftrightarrow x=1\)

Thay x = 1 vào B ta được \(B=3+8-1=10\)

c, Thay x = 1 ; y = -1 ta được 

\(C=3,2.1.\left(-1\right)=-3,2\)

d, Ta có \(x=\left|3\right|=3;y=-1\)Thay vào D ta được 

\(D=3.9-5\left(-1\right)+1=27+5+1=33\)

19 tháng 2 2022

thay x=2,y=-1 vào biểu thức A ta có;

 A=(2+2.(-1)^2-2+2.(-1)

A=(2+-2)^2-2+-2

A=0-2+-2

A=-4

b)

 (x^2+4)(x-1)=0

 suy ra x-1=0(x^2+4>0 với mọi x thuộc thuộc R)

(+)x-1=0

    x   =1

thay x=1 vào biểu thức B ta có;

B=3.1^2+8.1-1

B=3.1+8-1

B=3+8-1

B=10

c)thay x=1 và y=-1 vào biểu thức C ta có;

C=3,2.1^5.(-1)^3

C=3,2.1.(-1)

C=(-3,2)

d)giá trị tuyệt đối của 3=3 hoặc (-3)

TH1;thay x=3:y=-1 vào biểu thức d ta có;

D=3.3^2-5.(-1)+1

D=3.9-(-5)+1

D=27+5+1

D=33

 

    

a: \(A=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)

\(=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{12x^2}{\left(x-3\right)\left(x+3\right)}\right)\)

\(=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{-x^2-6x-9+x^2-6x+9-12x^2}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-\left(x+1\right)}{x\left(x-3\right)}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-12x^2-12x}\)

\(=\dfrac{-\left(x+1\right)\cdot\left(x+3\right)}{-12x^2\left(x+1\right)}=\dfrac{x+3}{12x^2}\)

b: Ta có: |2x-1|=5

=>2x-1=5 hoặc 2x-1=-5

=>x=-2

Thay x=-2 vào A, ta được:

\(A=\dfrac{-2+3}{12\cdot\left(-2\right)^2}=\dfrac{1}{48}\)

c: Để \(A=\dfrac{2x+1}{x^2}\) thì \(\dfrac{x+3}{12x^2}=\dfrac{2x+1}{x^2}\)

=>x+3=24x+12

=>24x+12=x+3

=>23x=-9

hay x=-9/23

d: Để A<0 thì x+3<0

hay x<-3

29 tháng 6 2021

`a)A=x(x+y)-x(y-x)`

`=x^2+xy-xy+x^2`

`=2x^2`

Thay `x=-3`

`=>A=2.9=18`

`b)B=4x(2x+y)+2y(2x+y)-y(y+2x)`

`=8x^2+4xy+4xy+2y^2-y^2-2xy`

`=8x^2+y^2+6xy`

Thay `x=1/2,y=-3/4`

`=>B=8*1/4+9/16-9/4`

`=2+9/16-9/4`

`=9/16-1/4=5/16`

28 tháng 6 2021

-Chia nhỏ ra bạn ơi để nhận được câu tl sớm nhất.

-Bạn đặt không mất gì nên cứ đặt thoải mái đuyyy.

-Để dài như này khum ai làm đouuu.

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{x-3\sqrt{x}}\right):\dfrac{2}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{2}\)

\(=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

b) Thay \(x=3-2\sqrt{2}\) vào A, ta được:

\(A=\dfrac{\sqrt{2}-1+1}{2\cdot\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{2}}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}=\dfrac{2+\sqrt{2}}{2}\)

c) Để \(A< \dfrac{2}{3}\) thì \(\dfrac{\sqrt{x}+1}{2\sqrt{x}}-\dfrac{2}{3}< 0\)

\(\Leftrightarrow\dfrac{3\left(\sqrt{x}+1\right)-4\sqrt{x}}{6\sqrt{x}}< 0\)

\(\Leftrightarrow-\sqrt{x}+3< 0\)

\(\Leftrightarrow-\sqrt{x}< -3\)

\(\Leftrightarrow\sqrt{x}>3\)

hay x>9

Vậy: Để \(A< \dfrac{2}{3}\) thì x>9

22 tháng 12 2022

`a,`để `x` xác định thì

\(3x+9\ne0\)

\(\Leftrightarrow x\ne-3\)

`b,` tại `x=2` thì :

`A=(x^2 + 3)/(3x + 9) =(2^2 +3)/(3.2+9)=(4+3)/(6+9)=7/15`

`=>A=7/15`