K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2019

Từ giả thiết 
x^2 - yz = a 
y^2 - zx = b 
z^2 - xy = c 
ta suy ra 
x^2 + y^2 + z^2 - xy - yz - zx = a + b + c # 0 (vì x,y,z không đồng thời bằng nhau); 
và 
x^3 - xyz = ax 
y^3 - xyz = by 
z^3 - xyz = cz. 
Cộng các đẳng thức theo vế, ta được 
x^3 + y^3 + z^3 - 3xyz = ax + by + cz. 
Sử dụng hằng đẳng thức x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) và x^2 + y^2 + z^2 - xy - yz - zx = a + b + c thì đẳng thức trên được viết lại 
(x + y + z)(a + b + c) = ax + by + cz. 
Suy ra ax + by + cz chia hết cho a + b + c. 

24 tháng 10 2019

bài này dùng chia hết thôi 

7 tháng 3 2021

\(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-xyz=ax\\y^3-xyz=by\\z^3-xyz=cz\end{matrix}\right.\) \(\Rightarrow ax+by+cz=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)⋮\left(x+y+z\right)\)

19 tháng 8 2017

Ta có

x2-yz=a

y2-zx=b

z2-xy=c

=>x3-xyz=ax

    y3-xyz=by

    z3-xyz=cz

=> x3+y3+z3-3xyz=ax+by+cz

Lại có

x3+y3+z3-3xyz

=(x+y)3-3x2y-3xy2+z3-3xyz

=[(x+y)3+z3]-3xy(x+y+z)

Áp dụng hằng đẳng thức x3+y3=(x+y)(x2-xy+y2) ta được:

=(x+y+z)[(x+y)2-z(x+y)+z2]-3xy(x+y+z)

=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=(x+y+z)(x2+y2+z2-xy-yz-zx)

( Hình như phải Chứng minh ax+by+cz chia hết cho x+y+z chứ nhỉ, nếu ko phải thì cho mik srr nhé, nếu đúng như mình nói thì bạn làm như trên nha)

19 tháng 8 2017

ak mình nhầm tẹo srr nha, đến chỗ

(x+y+z)(x2+y2+z2-xy-yz-zx)

Vì x2-yz=a, y2-zx=b, z2- xy=c

=>x2+y2+z2-xy-yz-zx=a+b+c

=>ax+by+cz=(x+y+z)(a+b+c)

=> DPCM

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

2 tháng 11 2016

Đề bài sai ngay từ giả thiết x,y,z nguyên dương.

Rõ ràng khi đó x,y,z > 0 => \(xy+yz+zx>0\)(đẳng thức không xảy ra)

Vậy đề đúng phải là x,y,z nguyên dương thỏa mãn \(xy+yz+zx=1\)

Khi đó ta giải như sau : 

\(x^2+1=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\)

\(y^2+1=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)

\(z^2+1=z^2+xy+yz+zx=\left(z+x\right)\left(z+y\right)\)

\(\Rightarrow A=\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\) là bình phương của một số nguyên.

7 tháng 1 2017

x2=yz  => \(\frac{x}{y}=\frac{z}{x}\)

\(z^2=xy\Rightarrow\frac{z}{x}=\frac{y}{z}\)

\(\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)

áp dụng ... ta có

\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}=\frac{x+z+y}{y+x+z}=1\)

\(\frac{x}{y}=1\Rightarrow x=y\)

\(\frac{z}{x}=1\Rightarrow z=x\)

=>x=y=z