K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2015

Bài này không đơn giản biến đổi tương đương được đâu em.

Theo giả thiết \(2015=a+b+c\to2015a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(a+c\right).\)

Theo bất đẳng thức Bunhiacốpxki:   \(2015a+bc=\left(a+b\right)\left(c+a\right)\ge\left(\sqrt{ac}+\sqrt{bc}\right)^2.\) 

Vì vậy mà \(\frac{a}{a+\sqrt{2015a+bc}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}.\)

Tương tự ta có \(\frac{b}{b+\sqrt{2015b+ca}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}},\)  và  \(\frac{c}{c+\sqrt{2015c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}.\)  Cộng cả ba bất đẳng thức lại ta được ngay điều phải chứng minh.

 

 

29 tháng 5 2018

bạn thế 2019=a+b+c de thoi ma

29 tháng 5 2018

Ta có: \(2019a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(c+a\right)\ge\left(\sqrt{ab}+\sqrt{ac}\right)^2\)

\(\Rightarrow a+\sqrt{2019a+bc}\ge a+\sqrt{ab}+\sqrt{bc}=\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(\Rightarrow\frac{a}{a+\sqrt{2019a+bc}}\le\frac{a}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Tương tự cộng vào suy ra điều phải chứng minh

17 tháng 8 2019

Ta có : \(\sqrt{2015a+bc}=\sqrt{\left(a+b+c\right)a+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có : \(\left(a+b\right)\left(a+c\right)=\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a}^2+\sqrt{c}^2\right)\ge\left(\sqrt{ac}+\sqrt{ab}\right)^2\)

\(\Rightarrow\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)

\(\Rightarrow\frac{a}{a+\sqrt{2015a+bc}}\le\frac{a}{a+\sqrt{ac}+\sqrt{ab}}=\frac{\sqrt{a}^2}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

\(\Rightarrow\Sigma\frac{a}{a+\sqrt{2015a+bc}}\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)

5 tháng 1 2017

Ap dông B§T C-S ta cã:

\(\frac{a}{a+\sqrt{2016a+bc}}=\frac{a}{a+\sqrt{\left(a+b+c\right)a+bc}}=\frac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\)

\(\le\frac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)

\(=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\). T­uong tù ta cx cã: 

\(\frac{b}{b+\sqrt{2016b+ca}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};\frac{c}{c+\sqrt{2016c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Céng theo vÕ c¸c B§T trªn ta dc:

\(VT\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)

P/s:may mk bi loi Unikey r` mk dg ban chua kip chinh lai bn gang doc 

24 tháng 8 2020

Ta viết lại bất đẳng thức cần chứng minh thành\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge6\)

Theo giả thiết, ta có a + b + c = 3 nên\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}=\sqrt{\frac{2\left(a+a+b+c\right)}{a+bc}}=\sqrt{2\left(\frac{a+b}{a+bc}+\frac{a+c}{a+bc}\right)}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}\)(Áp dụng bất đẳng thức \(\sqrt{2\left(x+y\right)}\ge\sqrt{x}+\sqrt{y}\))

Hoàn toàn tương tự, ta được: \(\sqrt{\frac{2\left(b+3\right)}{b+ca}}\ge\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}\)\(\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+b}{b+ca}}\ge\frac{4\sqrt{a+b}}{\sqrt{a+bc}+\sqrt{b+ca}}\ge\frac{2\sqrt{2}\sqrt{a+b}}{\sqrt{a+bc+b+ca}}=\frac{2\sqrt{2}}{\sqrt{c+1}}\)(*)

Tương tự ta có: \(\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{b+c}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{a+1}}\)(**) ; \(\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+a}{a+bc}}\ge\frac{2\sqrt{2}}{\sqrt{b+1}}\)(***)

Cộng theo vế ba bất đẳng thức (*), (**) và (***) suy ra \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)\(\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Do đó ta có: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\ge6\)hay \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{3}{\sqrt{2}}\)

Thật vậy, áp dụng bất đẳng thức Cauchy – Schwarz ta được \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{9}{\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}}\ge\frac{9}{\sqrt{3\left(a+b+c+3\right)}}=\frac{3}{\sqrt{2}}\)

Vậy bất đẳng thức được chứng minh 

Đẳng thức xảy ra khi a = b = c = 1

21 tháng 5 2018

\(\frac{\sqrt{ab}}{c+2\sqrt{ab}}=\frac{1}{2}\left(\frac{x+2\sqrt{xy}-z}{z+2\sqrt{xy}}\right)=\frac{1}{2}\left(1-\frac{z}{z+2\sqrt{xy}}\right)\le\frac{1}{2}\left(1-\frac{z}{x+y+z}\right)\)

Tương tự \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}\le\frac{1}{2}\left(1-\frac{x}{x+y+z}\right)\);\(\frac{\sqrt{xz}}{y+2\sqrt{xz}}\le\frac{1}{2}\left(1-\frac{y}{x+y+z}\right)\)

Cộng vế theo vế ta được \(\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\le\frac{1}{2}\left(3-1\right)=1\)

21 tháng 5 2018

bạn cho mình hỏi x,y,z là j vậy bạn