K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2021

1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)

Thay \(x=\frac{1}{9}\) vào A ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)

2. \(B=...\)

    \(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

    \(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

     \(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{\sqrt{x}+3}{-6}\)

Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)

hay \(P\le-\frac{1}{2}\)

Dấu "=" xảy ra <=> x=0

17 tháng 5 2021

toán lớp 9 khó zậy em đọc k hỉu 1 phân số

1, Thay x = 16 vào ta được \(A=\dfrac{4}{4+3}=\dfrac{4}{7}\)

2, \(A+B=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{-x+6\sqrt{x}-9}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{3}{\sqrt{x}+3}\)

Ta có đpcm 

a: \(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}-3}\)

b: A=1/3

=>\(\dfrac{-3}{\sqrt{x}-3}=\dfrac{1}{3}\)

=>căn x-3=-9

=>căn x=-6(loại)

c: căn x-3>=-3

=>3/căn x-3<=-1

=>-3/căn x-3>=1

Dấu = xảy ra khi x=0

11 tháng 8 2023

\(-3+6=-3\) =))

15 tháng 5 2021

tự làm đi

a, Ta có : \(x=9\Rightarrow\sqrt{x}=3\)

Thay vào biểu thức A ta được : \(A=\frac{2}{3-2}=2\)

b, Với \(x\ge0;x\ne4\)

\(B=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{4\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(\sqrt{x}-2\right)+4\sqrt{x}}{x-4}\)

\(=\frac{x+2\sqrt{x}}{x-4}=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}=\frac{\sqrt{x}}{\sqrt{x}-2}\)( đpcm )

c, Ta có : \(A+B=\frac{3x}{\sqrt{x}-2}\)hay 

\(\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{2+\sqrt{x}}{\sqrt{x}-2}=\frac{3x}{\sqrt{x}-2}\)

\(\Rightarrow2+\sqrt{x}=3x\Leftrightarrow3x-2-\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}=3x-2\Leftrightarrow x=9x^2-12x+4\)

\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\Leftrightarrow x=\frac{4}{9}\left(ktm\right);x=1\)( đk : \(x\ge\frac{2}{3}\))

16 tháng 5 2021

sao cô cho cả đáp án ra lun thế ạ @@

16 tháng 5 2021

à ko em nhầm nhầm em xin lỗi cô 

a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)

Thay vào biểu thức A ta được : \(\frac{1}{2-1}=1\)

b, Với \(x\ge0;x\ne1\)

\(Q=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{x-1}-1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-2-x+1}{x-1}\)

\(=\frac{x+\sqrt{x}-2-x+1}{x-1}=\frac{\sqrt{x}-1}{x-1}=\frac{1}{\sqrt{x}+1}\)

c, Ta có : \(\frac{1}{Q}+P\le4\)hay\(1:\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}\le4\)ĐK : \(x\ne1\)

\(\Leftrightarrow\frac{x-1+1}{\sqrt{x}-1}-4\le0\Leftrightarrow\frac{x-4\sqrt{x}+4}{\sqrt{x}-1}\le0\)

\(\Leftrightarrow\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}\le0\Rightarrow\sqrt{x}-1\le0\Leftrightarrow\sqrt{x}\le1\Leftrightarrow x\le1\)do \(\left(\sqrt{x}-2\right)^2\ge0\)

Kết hợp với đk, vậy \(x< 1\)

4 tháng 6 2021

1, thay x=4 (TMĐKXĐ) vào P ta được:

P=\(\dfrac{1}{\sqrt{4}-1}\)=1

vậy khi x=4 thì P =1

2,với x≥0,x≠1:

Q=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)-\(\dfrac{2}{\sqrt{x}-1}-1\)=\(\dfrac{\sqrt{x}-2-\sqrt{x}+1}{\sqrt{x}-1}\)=\(\dfrac{-1}{\sqrt{x}-1}\)

vậy Q=\(\dfrac{-1}{\sqrt{x}-1}\)

3,\(\dfrac{1}{Q}+P\le4\)

⇒1/\(\dfrac{-1}{\sqrt{x}-1}\)+\(\dfrac{1}{\sqrt{x}-1}\)≤4⇔\(\dfrac{-\sqrt{x}-1}{1}+\dfrac{1}{\sqrt{x}-1}\le4\)\(\dfrac{-x+1+1}{\sqrt{x}-1}-4\le0\)\(\dfrac{-x+2-4\sqrt{x}+4}{\sqrt{x}-1}\le0\)\(\dfrac{-x-4\sqrt{x}+6}{\sqrt{x}-1}\le0\)\(\dfrac{x+4\sqrt{x}-6}{\sqrt{x}-1}\le0\)\(\dfrac{x+4\sqrt{x}+4-10}{\sqrt{x}-1}\le0\)

\(\dfrac{ \left(\sqrt{x}+2\right)^2-10}{\sqrt{x}-1}\le0\)\(\sqrt{x}-1\le0\) (vì (\(\sqrt{x}+2\))\(^2\)≥0 ∀ x hay (\(\sqrt{x}+2\))\(^2\)-10>0 ∀ x)

                                ⇔x≤1 (KTM)

vậy không có giá trị nào của x TM  để  \(\dfrac{1}{Q}+P\le4\)

                                

                                 

 

a) Thay x=4 vào biểu thức \(B=\dfrac{3}{\sqrt{x}-1}\), ta được:

\(B=\dfrac{3}{\sqrt{4}-1}=\dfrac{3}{2-1}=3\)

Vậy: Khi x=4 thì B=3

b) Ta có: P=A-B

\(\Leftrightarrow P=\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x}-1}\)

\(\Leftrightarrow P=\dfrac{6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)