K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

a) Áp dụng bất đẳng thức Bnhiacopxki ta có :

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

b) Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đúng)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3bc+3ac\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Rightarrow ab+ac+bc\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

NV
21 tháng 8 2021

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow ab+bc+ca\le1\)

\(\Rightarrow P_{max}=1\) khi \(a=b=c\)

Lại có:

\(\left(a+b+c\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow ab+bc+ca\ge-\dfrac{a^2+b^2+c^2}{2}=-\dfrac{1}{2}\)

\(P_{min}=-\dfrac{1}{2}\) khi \(a+b+c=0\)

NV
18 tháng 8 2021

\(9=3a^2+2b^2+2bc+2c^2=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+2a^2+\dfrac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+\dfrac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)

\(\Rightarrow-3\le a+b+c\le3\)

\(T_{max}=3\) khi \(a=b=c=1\)

\(T_{min}=-3\) khi \(a=b=c=-1\)

18 tháng 8 2021

con cảm ơn thầy ah.

7 tháng 3 2022

\(a+b=1\Rightarrow a=\dfrac{1}{2}+x;b=\dfrac{1}{2}+y\left(x+y=0\right)\)

có: \(A=a\left(a^2+2b\right)+b\left(b^2-a\right)=a^3+b^3+ab=a^2+b^2\\ =\left(\dfrac{1}{2}+x\right)^2+\left(\dfrac{1}{2}+y\right)^2=\dfrac{1}{2}+x^2+y^2\ge\dfrac{1}{2}\)

\(\Rightarrow A_{min}=\dfrac{1}{2}\Leftrightarrow x=y=0\Leftrightarrow a=b=\dfrac{1}{2}\)

7 tháng 3 2022

\(a+b=1\)

\(\Rightarrow a^2+2ab+b^2=1\)

\(\Rightarrow\left(a^2+b^2\right)+2ab=1\)

\(\Rightarrow2ab+2ab\le1\) (do \(a^2+b^2\ge2ab\))

\(\Rightarrow ab\le\dfrac{1}{4}\)

\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)\)

\(=a^3+2ab+b^3-ab\)

\(=a^3+b^3+ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+ab\)

\(=1^3-3ab+ab=1-2ab\ge1-2.\dfrac{1}{4}=\dfrac{1}{2}\)

\(A_{min}=\dfrac{1}{2}\Leftrightarrow a=b=\dfrac{1}{2}\)