K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

ap dung bunhiacopki

\(\left(x^4+1\right)\left(y^4+1\right)>=\left(x^2+y^2\right)^2>=\left[\frac{\left(x+y\right)^2}{2}\right]^2=4\)

do do P>=4+2013=2017

= xảy ra <=>x=y=1

Câu 1: 

a: \(\Leftrightarrow2x^2-x-5< x^2+x-6\)

\(\Leftrightarrow x^2-2x+1< 0\)

hay \(x\in\varnothing\)

b: \(\Leftrightarrow x^2-5x-x+4>0\)

\(\Leftrightarrow x^2-6x+4>0\)

\(\Leftrightarrow\left(x-3\right)^2>5\)

hay \(\left[{}\begin{matrix}x>\sqrt{5}+3\\x< -\sqrt{5}+3\end{matrix}\right.\)

20 tháng 11 2018

theo bđt cauchy schwars dạng engel ta có

\(T=\dfrac{x^2}{y+x}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\)

Dấu '=' xảy ra khi x=y=z

pt \(\Leftrightarrow\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015\)

\(\Leftrightarrow3\sqrt{2}x=2015\)

\(\Leftrightarrow x=\dfrac{2015}{3\sqrt{2}}\)

vậy \(T_{min}=\dfrac{2015}{\sqrt{2}}\) khi \(x=y=z=\dfrac{2015}{3\sqrt{2}}\)

ko chắc đúng nha bạn :))

Ta có: \(\Delta'=32>0\)

\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)

Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)

\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)

Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\) 

 

9 tháng 8 2017

Ta có BĐT \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\)

Tương tự cũng có 2 BĐT tương tự:

\(y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)

Và BĐT \(x^2+y^2+z^2\ge xy+yz+xz\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(y-z\right)^2\ge0\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\left(2\right)\)

Cộng theo vế 2 BĐT (1) và (2) có:

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2\cdot6=12\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\Leftrightarrow x^2+y^2+z^2\ge3\)

Xảy ra khi \(x=y=z=1\)

9 tháng 8 2017

Lớp 9 gì mà hs lớp 7 làm đc :)) ahaha

Áp dụng bất đẳng thức Cauchy ta có :

\(x^2+1\ge2x\)

\(y^2+1\ge2y\)

\(z^2+1\ge2z\)

\(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2zx\)

Cộng vế với vế ta được :

\(3x^2+3y^2+3z^2+3\ge x+y+z+xy+xz+yz\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge6\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{6-3}{3}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Vậy \(x^2+y^2+z^2\) có GTNN là 1 tại \(x=y=z=1\)

từ cái đầu=>x-xy+y-xy=(1-x)(1-y)

<=>x+y-2xy=xy-x-y+1

<=>2(x+y)=3xy+1

\(\Leftrightarrow x+y=\frac{3xy+1}{2}\)

\(\sqrt{x^2-xy+y^2}=\sqrt{\left(x+y\right)^2-3xy}=\sqrt{\frac{9x^2y^2+6xy+1}{4}-3xy}=\sqrt{\frac{9x^2y^2-6xy+1}{4}}=\sqrt{\left(\frac{3xy-1}{2}\right)^2}\)với 3xy-1>0

\(\Rightarrow P=\frac{3xy+1}{2}+\frac{3xy-1}{2}=3xy\)

với 3xy-1<(=)0

\(\Rightarrow P=\frac{3xy+1}{2}+\frac{1-3xy}{2}=1\)