K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

Ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\frac{ab+ca+c\left(b+c\right)}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\)

<=> a+b=0 hoặc b+c=0 hoặc c+a=0

TH1: Nếu a+b=0

Ta có: \(a^{25}+b^{25}=\left(a+b\right)\left(...\right)\)=> A=0

TH2: Nếu b+c=0 

Ta có: \(b^3+c^3=\left(b+c\right)\left(...\right)=0\)=> A=0

TH3: Nếu c+a=0 => c=-a => \(c^{2000}=a^{2000}\Rightarrow c^{2000}-a^{2000}=0\)=> A=0

Vậy trong tất cả các TH thì A=0

17 tháng 4 2017

Ta có  \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{c}=\frac{1}{a+b+c}\) 

\(\Leftrightarrow\) \(\frac{a+b}{ab}=\frac{1}{a+b+c}-\frac{1}{c}=\frac{c-\left(a+b+c\right)}{c\left(a+b+c\right)}=\frac{-a-b}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\) \(c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\) \(\left(a+b\right)\left(ca+cb+c^2+ab\right)=0\)

\(\Leftrightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\) \(\hept{\begin{cases}a+b=0\\b+c=0\\c+a\end{cases}}=0\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}\Leftrightarrow\hept{\begin{cases}a^3=-b^3\\b^3=-c^3\\c^3=-a^3\end{cases}}\Leftrightarrow\hept{\begin{cases}a^3+b^3=0\\b^3+c^3=0\\c^3+a^3=0\end{cases}}}\) 

(ko có kí hiệu hoặc cho 3 cái nên mk dùng kí hiệu và nhé)

Do đó \(A=\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=0\)

20 tháng 4 2017

em mới học lớp 5 nên ko giúp đc gì, mong chị tha lỗi. chúc chị học giỏi nha

19 tháng 2 2017

1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)

CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)

Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Thay vào biểu thwusc M ta được M=3abc (ĐPCM)

2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó

Nếu không thấy thì em có thể quy đồng lên mà rút gọn

20 tháng 2 2017

vâng e cảm ơn anh 

16 tháng 8 2016

a) \(P=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-c\right)\left(b-a\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)

Đặt \(x=\frac{b}{c-a},y=\frac{c}{a-b},z=\frac{a}{b-c}\) , suy ra : \(P=-xy-yz-xz\)

Lại có : \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

\(\Rightarrow xy+yz+xz=-1\Rightarrow P=1\)

 

16 tháng 8 2016

\(Q=\frac{\left[\left(x+\frac{1}{x}\right)^2\right]^3-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)

\(=3x+\frac{3}{x}=3\left(x+\frac{1}{x}\right)\)

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

25 tháng 9 2018

\(VT=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{\left(b-a\right)-\left(c-a\right)}{\left(b-a\right)\left(c-a\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(c-b\right)\left(a-b\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(a-c\right)\left(b-c\right)}\)

\(=\frac{1}{c-a}-\frac{1}{b-a}+\frac{1}{a-b}-\frac{1}{c-b}+\frac{1}{b-c}-\frac{1}{a-c}\)

\(=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=VP\left(đpcm\right)\)

19 tháng 6 2020

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3=\left(\frac{a}{b}+\frac{a}{a}\right)+\left(\frac{b}{c}+\frac{b}{b}\right)+\left(\frac{c}{a}+\frac{c}{c}\right)\)

\(=a\left(\frac{1}{a}+\frac{1}{b}\right)+b\left(\frac{1}{b}+\frac{1}{c}\right)+c\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(\ge a.\frac{4}{a+b}+b.\frac{4}{b+c}+c.\frac{4}{c+a}=4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)

Dấu "=" <=> a = b = c