Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) VÌ DE//BC
SUY RA \(\frac{DN}{BM}=\frac{AN}{AM}\)VÀ \(\frac{NE}{MC}=\frac{AN}{AM}\)\(\Rightarrow\frac{DN}{BM}=\frac{NE}{MC}\)mà BM=MC(m là trung diểm) nên DN=NE
b) dễ thấy \(\frac{KN}{KC}=\frac{DN}{BC}\)VÀ\(\frac{SN}{SB}=\frac{NE}{BC}\)mà \(\frac{DN}{BC}=\frac{NE}{BC}\)(NE=DN)
\(\Rightarrow\frac{KN}{KC}=\frac{SN}{SB}\)áp dụng định lí talet ta suy ra KS//BC

Hình vẽ bn tự vẽ
Vì tam giác ABC đều nên góc BAC=60 độ
Mà góc EAD=góc BAC
Suy ra: góc EAD=60 độ
Ta lại có: AE=AD(gt)
Suy ra: tam AED đều có DM là đg trung tuyến
Suy ra DM cũng là đường cao
Xét tam giác vuông DMC có:
\(MP=\frac{1}{2}CD\)(1)
Tương tự: CN vuông góc AB
Xét tam giác vuông CND có:
\(NP=\frac{1}{2}CD\)(2)
Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh
Suy ra: CD=BE
Mà tam giác AEB có: MN là đường trung bình
Suy ra: \(MN=\frac{1}{2}BE\)
Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)
Từ (1);(2) và (3)
Vậy tam giác MNP đều
Chúc bn học tốt.
Mik đi hc đến 8h30 tối mới về nên làm hơi trễ

a)Xét \(\Delta\) NAM và \(\Delta\)BAC có:
\(\frac{BA}{AC}=\frac{4}{5};\frac{NA}{AM}=\frac{4}{5}\)
^A_chung
Vậy\(\Delta\)NAM đồng dạng\(\Delta\) BAC (c.g.c)
=> đpcm
b, Xét \(\Delta\)NAB và \(\Delta\)MAC ta có :
\(\frac{AM}{AC}=\frac{1}{3};\frac{AN}{AB}=\frac{1}{3}\)
\(\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)
^A_chung
Vậy \(\Delta\)NAB đồng dạng với \(\Delta\)MAC (c.g.c)
=> ^ANB = ^AMC
=> \(\Delta\)BOM đồng dạng với \(\Delta\)COM(gg)
Vì có ^ABN = ^ACM ; ^MOB = ^NOC (đđ)
=> \(\frac{OM}{OB}=\frac{ON}{OC}\Rightarrowđpcm\)