K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Nhân 2 vế của \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) có: \(ab+bc+ca=abc\)

Ta có: 

\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^2}{a+bc}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)

\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}\cdot\frac{a+b}{8}\cdot\frac{a+c}{8}}=\frac{3a}{4}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{b^2}{b+ca}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3b}{4};\frac{c^2}{c+ab}+\frac{a+c}{8}+\frac{b+c}{8}\ge\frac{3c}{4}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{6\left(a+b+c\right)}{8}\)

\(\Leftrightarrow VT\ge\frac{a+b+c}{4}=VP\). Ta có ĐPCM

28 tháng 12 2016

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự : \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\) ; \(\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)

Cộng theo vế : \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{1}{2}\left(ab+bc+ac\right)\ge3-\frac{1}{2}.\frac{\left(a+b+c\right)^2}{3}=\frac{3}{2}\)

\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)

2 tháng 10 2017

\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}=\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{2\sqrt{bc}}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

hai cái kia tương tự rồi nhân cả ba cái lại ra được đpcm

30 tháng 5 2018

Ta có; \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)

Tương tự : \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\)

                 \(\frac{c^2}{c+a}+\frac{c+a}{4}\ge c\)

Cộng từng vế ta có:

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}+\frac{a+b+c}{2}\ge a+b+c\)

\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}=\frac{1}{2}\)

25 tháng 10 2020

 Sử dụng bất đẳng thức AM-GM ta có : \(\left(\frac{1}{a^2}+1\right)\left(\frac{1}{b^2}+2\right)\left(\frac{1}{c^2}+8\right)\ge2\sqrt{\frac{1}{a^2}}.2\sqrt{\frac{2}{b^2}}.2\sqrt{\frac{8}{c^2}}=8.\sqrt{16}.\frac{1}{abc}=\frac{32}{abc}\)

Dấu "=" xảy ra khi và chỉ khi ...

25 tháng 10 2020

Áp dụng bất đẳng thức cô -si cho 2 số dương , ta có :

\(\hept{\begin{cases}\frac{1}{a^2}+1\ge2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\\\frac{1}{b^2}+2\ge2\sqrt{\frac{1}{b^2}.2}=\frac{2\sqrt{2}}{b}\\\frac{1}{c^2}+8\ge2\sqrt{\frac{1}{c^2}.8}=\frac{4\sqrt{2}}{c}\end{cases}}\)

Nhân vế với vế ts có :

\(\left(\frac{1}{a^2}+1\right)\left(\frac{1}{b^2}+2\right)\left(\frac{1}{c^2}+8\right)\ge\frac{32}{abc}\left(đpcm\right)\)

19 tháng 12 2018

Áp dụng BĐT AM-GM: \(1+b^2\ge2b\)

\(\Rightarrow\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng vế với vế 3 BĐT trên ta được:  \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)

Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\) 

Nên \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{\left(a+b+c\right)^2}{6}=3-\frac{9}{6}=\frac{3}{2}\)(đpcm).

Dấu "=" xảy ra <=> a=b=c=1.