K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2021

Chắc bạn đánh nhầm đề. Đây là bài 7 trong báo TTT tháng trước. (Nếu mình sửa sai thì mình xin lỗi nhé).

Sửa đề: Cho \(n\in\mathbb{N},n\geq 2\) và \(x_i\in[1;\sqrt{2}] \forall i\in\overline{1,n}\).

Chứng minh: \(\dfrac{\sqrt{x_1^2-1}}{x_2}+\dfrac{\sqrt{x_2^2-1}}{x_3}+...+\dfrac{\sqrt{x_n^2-1}}{x_1}\le\dfrac{n\sqrt{2}}{2}\).

Giải:

Áp dụng bất đẳng thức AM - GM ta có:

\(\dfrac{\sqrt{x_1^2-1}}{x_2}=\dfrac{1}{2\sqrt{2}}.2.\sqrt{x_1^2-1}.\dfrac{\sqrt{2}}{x_2}\le\dfrac{1}{2\sqrt{2}}.\left(x_1^2-1+\dfrac{2}{x_2^2}\right)\).

Chứng minh tương tự...

Do đó \(VT\le\dfrac{1}{2\sqrt{2}}\left(x_1^2+x_2^2++...+x_n^2+\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}+...+\dfrac{2}{x_n^2}-n\right)\).

Mặt khác với mọi \(i\in\overline{1,n}\) ta có:

\(x_i^2+\dfrac{2}{x_i^2}-3=\dfrac{\left(x_i^2-1\right)\left(x_i^2-2\right)}{x_i^2}\le0\).

Do đó \(VT\le\dfrac{1}{2\sqrt{2}}\left(x_1^2+x_2^2++...+x_n^2+\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}+...+\dfrac{2}{x_n^2}-n\right)\le\dfrac{1}{2\sqrt{2}}\left(3n-n\right)=\dfrac{n\sqrt{2}}{2}=VP\left(đpcm\right)\).

 

12 tháng 6 2016

Vì \(x_1,x_2,x_3,....,x_n>0\)nên ta áp dụng bất đẳng thức Cosi, được : 

\(1+x_1\ge2\sqrt{x_1}\)(1)

\(1+x_2\ge2\sqrt{x_2}\)(2)

.............................

\(1+x_n\ge2\sqrt{x_n}\)(n)

Nhân n bất đẳng thức trên theo vế, được  :

\(\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_n\right)\ge2^n.\sqrt{x_1.x_2...x_n}\)

Dấu đẳng thức xảy ra \(\Leftrightarrow x_1=x_2=x_3=...=x_n=1\)(thoả mãn điều kiện)

Vậy nghiệm nguyên dương của phương trình : \(x_1=x_2=...=x_n=1\)

27 tháng 3 2017

Phát biểu bất đẳng thức Cosy hay bất đẳng thức AM-GM:

Với n số không âm a_i với i=1,2,...,n ta có bất đẳng thức :

a_1 + a_2 + ... + a_3 >= n.(căn bậc n của (a_1.a_2....a_n))

Trường hợp n =1 hiển nhiên đúng.
Trường hợp n=2 ta có
a_1+a_2>= 2.(căn hai của (a_1.a_2))
<=>(căn bậc hai của(a_1) - căn bậc hai của (a_2))>= 0 (đúng)

Không mất tính tổng quát giả sử bđt đúng với n = k. Ta sẽ chứng mình bđt đúng với n=2k. Thật vậy
Ta có
[ a_1 + a_2 + ... + a_(k -1) + a_k ]+[a_(k+1) + ... + a_(2k-1) + a_2k]
>= k.(căn bậc k của (a_1.a_2....a_k)) + k.(căn bậc k của (a_(k+1).a_(k+2)....a_2k))
>= 2k căn bậc 2k của (a_1.a_2...a_2k).

Bây giờ ta sẽ chứng minh đúng khi n=k-1
Ta có
a_1+a_2+...+a_(k-1) + căn bậc (k-1) của (a_1.a_2....a(k-1))
>= k . (căn bậc k của (a_1.a_2...a_(k-1).(căn bậc (k-1)của(a_1.a_2...a(k-1))) = k.(căn bậc (k-1) của (a_1.a_2...a_(k-1)). đpcm

Như vậy ta đã chứng minh bđt đúng khi n=2k và n=k-1. Đây là kiểu cm quy nạp lùi.

23 tháng 3 2020

Đặt \(t=\sqrt{x}\left(t\ge0\right)\Rightarrow t^2-\sqrt{6}t-3+2m=0\left(1\right)\)

Giả sử phương trình $(1)$ có nghiệm $t_1;t_2$ thì \(t_1+t_2=\sqrt{6}\)\(t_1.t_2=2m-3\)

\(t_1=\sqrt{x_1}\left(t_1\ge0\right)\Rightarrow x_1=t_1^2\)\(t_2=\sqrt{x_2}\left(t_2\ge0\right)\Rightarrow x_2=t_2^2\)

Ta có: \(\dfrac{{{x_1} + {x_2}}}{{\sqrt {{x_1}} + \sqrt {{x_2}} }} = \dfrac{{\sqrt {24} }}{3}\)

\(\Leftrightarrow \dfrac{{t_1^2 + t_2^2}}{{{t_1} + {t_2}}} = \dfrac{{\sqrt {24} }}{3}\\ \Leftrightarrow \dfrac{{{{\left( {{t_1} + {t_2}} \right)}^2} - 2{t_1}{t_2}}}{{{t_1} + {t_2}}} = \dfrac{{\sqrt {24} }}{3}\\ \Leftrightarrow \dfrac{{6 + 6 - 4m}}{{\sqrt 6 }} = \dfrac{{\sqrt {24} }}{3} \Leftrightarrow m = 2\left( {tm} \right)\)

23 tháng 3 2020

thank you very much!!

NV
15 tháng 2 2020

Câu 1:

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\frac{1}{\sqrt{2x+1}}=u>0\\\frac{1}{\sqrt{y-2}}=v>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4u+3v=5\\u-2v=\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4u+3v=5\\4u-8v=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4u+3v=5\\11v=-1\end{matrix}\right.\)

\(\Rightarrow v=-\frac{1}{11}< 0\) (loại)

Vậy hệ đã cho vô nghiệm

NV
15 tháng 2 2020

Câu 2:

\(\Delta=\left(m+2\right)^2-8m=m^2-4m+4=\left(m-2\right)^2\ge0\) \(\forall m\)

Phương trình luôn có nghiệm với mọi m

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m-2\\x_1x_2=2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=-2m-4\\x_1x_2=2m\end{matrix}\right.\)

\(\Rightarrow2x_1+2x_2+x_1x_2=-4\)

Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m