K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2019

Kĩ thuật gì đâu-_-

\(A=\Sigma_{cyc}\frac{a^2}{b^2+1}=\Sigma_{cyc}a^2\left(1-\frac{b^2}{b^2+1}\right)\)

\(\ge\Sigma_{cyc}a^2\left(1-\frac{b}{2}\right)=\Sigma_{cyc}a^2-\Sigma_{cyc}\frac{a^2b}{2}\)

\(=\frac{\left(a^2+b^2+c^2\right)+\left[\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\right]}{2}\)

\(=\frac{\left(a^2+b^2+c^2\right)+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^2+b^2+c^2\right)}{3}}{2}\)

\(=\frac{a^2+b^2+c^2+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2}{2}\)

\(\ge\frac{\left(a+b+c\right)^2}{6}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c 

30 tháng 12 2019

Lộn: a = b = c = 1 nha:v

26 tháng 12 2019

Chẳng có gì hay! Bài này chỉ hay khi nó là tìm Min (A đạt min là \(-\frac{446}{725}\) tại \(\left(x;y;z\right)=\left(-\frac{3}{4};-\frac{3}{4};\frac{5}{2}\right)\) và các hoán vị)

Cách 1:

Xét BĐT phụ: \(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\left(\text{với }a\ge-\frac{3}{4}\right)\)

\(\Leftrightarrow\frac{\left(4a+3\right)\left(3a-1\right)^2}{50\left(a^2+1\right)}\ge0\) đúng với mọi \(a\ge-\frac{3}{4}\)

Áp dụng: \(A\le\frac{18}{25}\left(x+y+z\right)+\frac{9}{50}=\frac{9}{10}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

Cách 2: (được suy ra từ cách trên)

Chú ý: \(\frac{a}{a^2+1}=\frac{18}{25}a+\frac{3}{50}-\frac{\left(4a+3\right)\left(3a-1\right)^2}{50\left(a^2+1\right)}\)

Từ đó viết được "SOS" (tại nó là sos của t chứ không phải sos chính thống của Phạm Kim Hùng:v)

26 tháng 12 2019

Cho sửa cái đề:

Tìm \(A_{max}=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)

4 tháng 11 2019

t có cách đoán nè nhưng hơi mất công xíu:) Với đk phải có máy tính  casio:)

4 tháng 11 2019

tth_new OK mem,nhà có casio.t sẽ hậu tạ:) Nhưng chả biết hậu tạ ntn nữa.

16 tháng 8 2017

giải hộ nha gấp

16 tháng 8 2017

mk thấy khó à nha

15 tháng 6 2020

Bài làm:

Bài 1:

Ta có: \(T=8x^2-4x+\frac{1}{4x^2}+15\)

\(=\left(4x^2-4x+1\right)+\left(4x^2+\frac{1}{4x^2}\right)+14\)

\(=\left(2x-1\right)^2+\left(4x^2+\frac{1}{4x^2}\right)+14\)\(\ge0+2\sqrt{4x^2.\frac{1}{4x^2}}+14=2+14=16\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-1\right)^2=0\\4x^2=\frac{1}{4x^2}\end{cases}\Rightarrow x=\frac{1}{2}}\)

Vậy \(Min\left(T\right)=16\)khi \(x=\frac{1}{2}\)

Bài 2:

Ta có: \(ab+bc+ca=3abc\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=3\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\left(1\right)\)

Ta xét \(\frac{a^2}{c\left(c^2+a^2\right)}=\frac{\left(c^2+a^2\right)-c^2}{c\left(c^2+a^2\right)}=\frac{1}{c}-\frac{c}{c^2+a^2}=\frac{1}{c}-\frac{1}{a}.\frac{ac}{c^2+a^2}\ge\frac{1}{c}-\frac{1}{a}.\frac{ac}{2ac}=\frac{1}{c}-\frac{1}{2}a\)

Tương tự ta chứng minh được: \(\frac{b^2}{a\left(a^2+b^2\right)}\ge\frac{1}{a}-\frac{1}{2}b\)và \(\frac{c^2}{b\left(b^2+c^2\right)}\ge\frac{1}{b}-\frac{1}{2}c\)

Cộng vế 3 bất đẳng thức trên lại ta được:

\(P\ge\frac{1}{c}-\frac{1}{2}a+\frac{1}{a}-\frac{1}{2}b+\frac{1}{b}-\frac{1}{2}c\)\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}.3=\frac{3}{2}\left(theo\left(1\right)\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}a^2=b^2\\b^2=c^2\\c^2=a^2\end{cases}\Rightarrow a=b=c=1}\)

Vậy \(Min\left(P\right)=\frac{3}{2}\)khi \(a=b=c=1\)

Học tốt!!!!

 

9 tháng 2 2019

"Chấm" nhẹ hóng cao nhân ạ :)

P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)

9 tháng 2 2019

Câu 3: Tham khảo đây nhá: Câu hỏi của Trương Thanh Nhân, t làm r,giờ lười đánh lại.

6 tháng 8 2019

Cách 1 

Áp dụng BĐT cosi ta có:

\(\frac{a^2+b^2}{b}+2b\ge2\sqrt{2\left(a^2+b^2\right)}\)

=> \(\frac{a^2}{b}+3b\ge2\sqrt{2\left(a^2+b^2\right)}\)

Tương tự

=> \(VT+3\left(a+b+c\right)\ge2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(a^2+c^2\right)}\)

Lại có \(\sqrt{2\left(a^2+b^2\right)}\ge a+b;\sqrt{2\left(b^2+c^2\right)}\ge b+c;\sqrt{2\left(a^2+c^2\right)}\ge a+c\)

=> \(VT\ge\frac{1}{\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c

Cách 2 tương tự dùng Buniacoxki

Một bài rất easy để dùng sos đây ạ!1/Cho a, b, c > 0. Chứng minh rằng:\(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\) Để ý rằng theo Bunhiacopxki ta có: \(\left(1+1+1\right)\left(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(c+a\right)^2}\right)\ge\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\right)^2=VT^2\)Suy...
Đọc tiếp

Một bài rất easy để dùng sos đây ạ!

1/Cho a, b, c > 0. Chứng minh rằng:\(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\) 

Để ý rằng theo Bunhiacopxki ta có: \(\left(1+1+1\right)\left(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(c+a\right)^2}\right)\ge\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\right)^2=VT^2\)

Suy ra \(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\) (do các hai vế đều dương)

Như vậy chúng ta sẽ được một bài toán rộng hơn bài trên,nhưng chắc hẳn rằng khi làm xong bài trên các bạn có thể giải ngay bài này chỉ qua biến đổi bđt đơn giản như trên! :D

Bài toán 2\(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)

 

 

 

0