K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

Áp dụng BĐT Cauchy - Schwarz và BĐT phụ \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\Rightarrow M^2=\left(\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\sqrt{\frac{c}{a+b+2c}}\right)^2\)

\(\le\left(1+1+1\right)\left(\frac{a}{b+c+2a}+\frac{b}{c+a+2b}+\frac{c}{a+b+2c}\right)\)

\(\le\frac{3}{4}\left(\frac{a}{b+a}+\frac{a}{c+a}+\frac{b}{b+c}+\frac{b}{b+a}+\frac{c}{c+a}+\frac{c}{c+b}\right)\)

\(=\frac{3}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{9}{4}\)

\(\Rightarrow M\le\frac{3}{2}\)

Dấu "= " xảy ra \(\Leftrightarrow a=b=c\)

14 tháng 4 2020

ko hỉu

2 tháng 1 2020

\(\frac{\sqrt{ab}}{a+b+2c}\le\frac{\sqrt{ab}}{2\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{4}\)

Tương tự cộng lại ta được:

\(F\le\frac{\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}}{4}=\frac{3}{4}\)

Dấu "=" xảy ra tại a=b=c

12 tháng 9 2021

Ta có: \(4ab\le2a^2+2b^2\)

=> \(\sqrt{2a^2+7b^2+16ab}\le\sqrt{4a^2+9b^2+12ab}=\sqrt{\left(2a+3b\right)^2}=2a+3b\)

=> \(\frac{a^2}{\sqrt{2a^2+7b^2+16ab}}\ge\frac{a^2}{2a+3b}\)

Chứng minh tương tự 

=> \(T\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\)

Áp dụng bđt bunhia dạng phân thức

=> \(T\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=1\)

=> \(MinT=1\)xảy ra khi a=b=c=5/3

NV
12 tháng 5 2021

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{5}}{2}\left(a+b\right)\)

Tương tự:

\(\sqrt{2b^2+bc+2c^2}\ge\dfrac{\sqrt{5}}{2}\left(b+c\right)\) ; \(\sqrt{2c^2+ca+2a^2}\ge\dfrac{\sqrt{5}}{2}\left(c+a\right)\)

Cộng vế với vế:

\(P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^3=\dfrac{\sqrt{5}}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{9}\)

13 tháng 4 2020

Ta có : 

\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{x+y}{xy}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng BĐT trên ta có : 

\(A=\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\)

\(\Rightarrow A=\frac{a}{\left(a+b\right)+\left(a+c\right)}+\frac{b}{\left(a+b\right)+\left(b+c\right)}+\frac{c}{\left(c+a\right)+\left(b+c\right)}\)

\(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)

\(+\frac{1}{4}\left(\frac{c}{c+a}+\frac{c}{b+c}\right)\)

\(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{b+c}\right)\)

\(\Rightarrow A\le\frac{1}{4}\left(\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)\right)\)

\(\Rightarrow A\le\frac{1}{4}\left(1+1+1\right)\)

\(\Rightarrow A\le\frac{3}{4}\)

Dấu " = " xảy ra khi a=b=c 

13 tháng 4 2020

Ta có: \(A=\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\)

\(=\frac{a}{\left(a+b\right)+\left(a+c\right)}+\frac{b}{\left(a+b\right)+\left(b+c\right)}+\frac{c}{\left(a+c\right)+\left(b+c\right)}\)

\(\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(=\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{a+c}{a+c}\right)=\frac{3}{4}\)

Dấu "=" xảy ra <=> a = b = c 

Vậy max A = 3/4 đạt tại a= b = c .

25 tháng 1 2018

ÁP DỤNG BĐT COSI TA CÓ :\(\sqrt{\frac{a}{b+c+2a}}\le\frac{a}{b+c+2a}+\frac{1}{4}\)

                                            \(\sqrt[]{\frac{b}{a+c+2b}}\le\frac{b}{a+c+2b}+\frac{1}{4}\)

                                            \(\sqrt[]{\frac{c}{a+b+2c}}\le\frac{c}{a+b+2c}+\frac{1}{4}\)

ĐẶT A=\(\sqrt[]{\frac{a}{b+c+2a}}+\sqrt[]{\frac{b}{a+c+2b}}+\sqrt[]{\frac{c}{a+b+2c}}\)

            \(\le\frac{a}{b+c+2a}+\frac{b}{a+c+2b}+\frac{c}{a+b+2c}+\frac{3}{4}\)

        ÁP DỤNG BĐT :\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

          \(\Rightarrow\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

          \(\Rightarrow\frac{b}{a+c+2b}\le\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)

           \(\Rightarrow\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{c+b}\right)\)

  \(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}\right)+\frac{3}{4}\)

 \(\Rightarrow A\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)+\frac{3}{4}\)

\(\Rightarrow A\le\frac{1}{4}\left(1+1+1\right)+\frac{3}{4}\)

\(\Rightarrow A\le\frac{3}{2}\)

DẤU = XẢY RA\(\Leftrightarrow a=b=c\)

30 tháng 8 2020

Một lời giải khác: 

\(\left(\Sigma\sqrt{\frac{a}{b+c+2a}}\right)^2=\left(\Sigma\sqrt{\frac{a\left(a+2c+b\right)}{\left(a+2c+b\right)\left(b+c+2a\right)}}\right)^2\)

\(\le\left[\Sigma a\left(a+2c+b\right)\right]\left[\Sigma\frac{1}{\left(a+2c+b\right)\left(b+c+2a\right)}\right]=\Sigma\frac{a^2+3ab}{\left(a+2c+b\right)\left(b+c+2a\right)}\)

\(=\frac{4\left(\Sigma a^2+3\Sigma ab\right)\left(\Sigma a\right)}{\Pi\left(a+2c+b\right)}\)

Cần chứng minh \(\frac{4\left(\Sigma a^2+3\Sigma ab\right)\left(\Sigma a\right)}{\Pi\left(a+2c+b\right)}\le\frac{9}{4}\)

Chịu khó quy đồng :V