K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\ge3\)mới chứng minh được

28 tháng 4 2019

@Trần Thùy Linh nói đúng đề rồi nhé

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\)

Áp dụng bđt Cauchy cho 3 số không âm :

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{xyz}{xyz}}=3\sqrt[3]{1}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=x=1\)

10 tháng 2 2019

đặt \(\frac{x-y}{z}=a;\frac{y-z}{x}=b;\frac{z-x}{y}=c\)

\(\Rightarrow\)\(\frac{z}{x-y}=\frac{1}{a};\frac{x}{y-z}=\frac{1}{b};\frac{y}{z-x}=\frac{1}{c}\)

Ta có : \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(A=1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

Ta có :  \(\frac{b+c}{a}=\left(b+c\right)\frac{1}{a}=\left(\frac{y-z}{x}+\frac{z-x}{y}\right)\frac{z}{x-y}=\frac{y^2-yz+xz-x^2}{xy}.\frac{z}{x-y}=\frac{\left(y-x\right)\left(x+y-z\right)}{xy}.\frac{z}{x-y}=\frac{\left(z-x-y\right)z}{xy}=\frac{2z^2}{xy}\)vì x + y + z = 0 \(\Rightarrow\)z = -x - y

Tương tự : \(\frac{a+c}{b}=\frac{2x^2}{yz}\)\(\frac{a+b}{c}=\frac{2y^2}{xz}\)

\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2z^2}{xy}+\frac{2x^2}{yz}+\frac{2y^2}{xz}=\frac{2\left(x^3+y^3+z^3\right)}{xyz}=\frac{2.3xyz}{xyz}=6\)( vì x + y + z = 0 \(\Rightarrow\)x3 + y3 + z3 = 3xyz )

Vậy A = 3 + 6 = 9

19 tháng 12 2016

Đặt: \(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}=M\)

Ta có: 

\(M\cdot\frac{z}{x-y}=1+\frac{z}{x-y}\cdot\left(\frac{y-z}{x}+\frac{z-x}{y}\right)=1+\frac{z}{x-y}\cdot\frac{y^2-yz+xz-x^2}{xy}\)

\(=1+\frac{z}{x-y}\cdot\frac{\left(x-y\right)\left(z-x-y\right)}{xy}=1+\frac{2z^2}{xyz}=1+\frac{2z^3}{xyz}\)            (1)

Tương tự ta cũng có:

\(M\cdot\frac{x}{y-z}=1+\frac{2x^3}{xyz}\)              (2)

\(M\cdot\frac{y}{z-x}=1+\frac{2y^3}{xyz}\)            (3)

Từ (1);(2);(3) suy ra

\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\left(x^3+y^3+z^3\right)}{xyz}\)

Mà \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

Nên:

\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\cdot3xyz}{xyz}=9\)

=>đpcm

7 tháng 6 2021

\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)

Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)

NV
4 tháng 5 2020

\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

Dấu "=" xảy ra khi \(x=y=z\)

Hoặc:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2\left(y+z\right)}{4\left(y+z\right)}}=x\)

\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\) ; \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

Cộng vế với vế ta có đpcm

27 tháng 4 2019

áp dụng bất đẳng thức cô si cho 3 số dương 

Với x, y,z>0 : \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\frac{y}{z}\frac{z}{x}}=3\sqrt[3]{1}=3.\) :

Dấu '=' xảy ra khi \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\Leftrightarrow x=y=z\)

26 tháng 6 2016

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{x+z}+1\right)+\left(\frac{z}{x+y}+1\right)-3\)

\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}+\frac{x+y+z}{x+y}-3=\left(x+y+z\right).\left(\frac{1}{y+z}+\frac{1}{x+z}+\frac{1}{x+y}\right)-3\)

\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(x+z\right)\right]\left(\frac{1}{y+z}+\frac{1}{x+z}+\frac{1}{x+y}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\left(đpcm\right)\)

26 tháng 6 2016

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)

Áp dụng Cô-Si cho các số không âm:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2;\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2;\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\)

Cộng theo vế các bất đẳng thức ta được: \(\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\ge2+2+2=6\)

Xem lại đề...............