K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

x;y;z có dương không ta ?

27 tháng 1 2019

Uk , đúng rồi , x,y,z dương nhé ! mình đánh thiếu đề

19 tháng 10 2017

Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.

4 tháng 1 2020

Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\Rightarrow\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=1\end{matrix}\right.\)

\(K=\frac{\frac{1}{a}}{\sqrt{\frac{1}{bc}\left(1+\frac{1}{a^2}\right)}}+\frac{\frac{1}{b}}{\sqrt{\frac{1}{ac}\left(1+\frac{1}{b^2}\right)}}+\frac{\frac{1}{c}}{\sqrt{\frac{1}{ab}\left(1+\frac{1}{c^2}\right)}}\) \(=\frac{\frac{1}{a}}{\sqrt{\frac{a^2+1}{a^2bc}}}+\frac{\frac{1}{b}}{\sqrt{\frac{b^2+1}{ab^2c}}}+\frac{\frac{1}{c}}{\sqrt{\frac{c^2+1}{abc^2}}}\)

\(=\sqrt{\frac{bc}{a^2+1}}+\sqrt{\frac{ca}{b^2+1}}+\sqrt{\frac{ab}{c^2+1}}\) \(=\sqrt{\frac{bc}{a^2+ab+bc+ca}}+\sqrt{\frac{ca}{b^2+ab+bc+ca}}+\sqrt{\frac{ab}{c^2+ab+bc+ca}}\)

\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{b}{b+c}\right)\) \(\Rightarrow K\le\frac{3}{2}\)

Dấu "=" \(\Leftrightarrow a=b=c\Leftrightarrow x=y=z=\sqrt{3}\)

23 tháng 7 2018

I don't now

...............

.................

.

23 tháng 7 2018

haizzzzzzzzzzzzz

6 tháng 8 2020

Do x+y+z=3 nên: \(3x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\)

tương tự và thay vào biểu thức

\(\Rightarrow A=\frac{x}{x+\sqrt{\left(x+z\right)\left(x+y\right)}}+\frac{y}{y+\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Áp dụng bđt Bunyakovsky:

\(A\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}+\frac{y}{y+\sqrt{yz}+\sqrt{yx}}+\frac{z}{z+\sqrt{xz}+\sqrt{yz}}\)

\(=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

28 tháng 5 2017

ta có 3x + yz = x2 + xy + yz + zx = (x+y)(x+z)

do đó:

\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x\left(\sqrt{x^2+xy+yz+zx}-x\right)}{\left(\sqrt{x^2+xy+yz+zx}+x\right)\left(\sqrt{x^2+xy+yz+zx}-x\right)}\)

\(\frac{x\left(\sqrt{\left(x+y\right)\left(x+z\right)}-x\right)}{xy+yz+zx}\le\frac{x\left(\frac{x+y+x+z}{2}-x\right)}{xy+yz+zx}\)\(\le\frac{x\left(y+z\right)}{2\left(xy+yz+zx\right)}\)

tương tự với 2 số hạng còn lại nên ta được: P\(\le\)1. đpcm

15 tháng 5 2020

hi minh ket ban nhe

3 tháng 6 2019

Có \(\sqrt{\frac{x}{\sqrt[]{3x+yz}}}=\sqrt[]{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}}\)

Làm tương tự với 2 cái còn lại

Ta sẽ dùng bđt cô si mở rộng: (a+b+c)^2<=3(a^2+b^2+c^2)

Đặt A là biểu thức để bài cho

Có A^2<=\(3\left(\frac{x}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\frac{y}{\sqrt[]{\left(y+x\right)\left(y+z\right)}}+\frac{z}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\right)\)

Ta có \(\frac{1}{\sqrt{\left(x+y\right)\left(x+z\right)}}< =\frac{1}{2}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)

nên \(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}< =\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

làm tương tự với 2 ngoặc còn lại ta sẽ thấy A^2<=\(\frac{9}{2}\)

hay A<=\(\frac{3}{\sqrt{2}}\)

dấu bằng xảy ra khi x=y=z=1

Chúc bạn học tốt!

26 tháng 8 2017

KON 'NICHIWA ON" NANOKO: chào cô

17 tháng 2 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x}{x+\sqrt{\left(x+y+z\right)x+yz}}=\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)

\(\le\frac{x}{x+\sqrt{\left(\sqrt{xy}+\sqrt{xz}\right)^2}}=\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự với 2 BĐT trên ta có: 

\(\frac{y}{y+\sqrt{3y+xz}}\le\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}};\frac{z}{z+\sqrt{3z+xy}}\le\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng theo vế ta có: \(VT\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)