K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

Theo Svac - xơ có :

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\)

Khi đó \(P\ge\frac{9}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\)

\(=\left(\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\right)+\frac{7}{ab+bc+ca}\)

\(\ge\frac{9}{a^2+b^2+c^2+2.\left(ab+bc+ca\right)}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}\)

\(=\frac{9}{\left(a+b+c\right)^2}+\frac{21}{\left(a+b+c\right)^2}=\frac{30}{\left(a+b+c\right)^2}=\frac{10}{3}\)

Dấu "=: xảy ra khi \(a=b=c=1\)

Vậy \(P_{min}=\frac{10}{3}\) khi \(a=b=c=1\)

23 tháng 8 2020

Bài 1: Ta có \(\left(\frac{a^2}{b}-a+b\right)+b^2=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\)  (áp dụng Bất Đẳng Thức Cosi)

\(=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\)

\(\Rightarrow\frac{a^2}{b}-a+2b\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{b^2}{c}-b+2c\ge\sqrt{b^2-bc+c^2}+\frac{1}{2}\left(b+c\right)\left(2\right)\\\frac{c^2}{a}-c+2a\ge\sqrt{c^2-ac+a^2}+\frac{1}{2}\left(a+c\right)\left(3\right)\end{cases}}\)

Từ (1) và (2) và (3) \(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)

Dấu "=" xảy ra khi a=b=c

20 tháng 5 2020

Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x,y,z\right)\)

thi \(P= \Sigma \frac{z^2}{x+y} \geq \frac{x+y+z}{2} \) (1)

Mat khac co \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\) (2)

Tu (1) va (2) suy ra \(P\ge\frac{3}{2}\).Dau = xay ra khi \(a=b=c=1\)

15 tháng 4 2019

\(P=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a^2+b^2+c^2}\)

\(P=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{9-2\left(ab+bc+ca\right)}\)

\(P=\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ca}+\frac{1}{9-2\left(ab+bc+ca\right)}+\frac{2}{3}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(P\ge\frac{16}{3ab+3bc+3ca+9-2\left(ab+bc+ca\right)}+\frac{2}{3}\left(\frac{9}{ab+bc+ca}\right)\)

\(P\ge\frac{16}{9+ab+bc+ca}+\frac{6}{ab+bc+ca}\)

Sử dụng đánh giá quen thuộc:\(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)

\(\Rightarrow ab+bc+ca\le3\)

\(\Rightarrow P\ge\frac{16}{9+3}+\frac{6}{3}=2+\frac{4}{3}=\frac{10}{3}\)

"="<=>a=b=c=1

24 tháng 11 2017

fkfkbang14

3 tháng 4 2017

Do a, b, c dương áp dụng bất đẳng thức Cô-si ta có:

\(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2\sqrt{\frac{b^2c^2}{a^2}.\frac{a^2c^2}{b^2}}=2c^2\)(1)

Tương tự \(\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge2a^2\) (2)  và \(\frac{b^2c^2}{a^2}+\frac{a^2b^2}{c^2}\ge2b^2\) (3)

Cộng (1), (2), (3) vế theo vế rồi chia 2 vế cho 2 ta được \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}\ge a^2+b^2+c^2=1\)

Ta có \(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(\frac{bc}{a}.\frac{ac}{b}+\frac{ac}{b}.\frac{ab}{c}+\frac{bc}{a}.\frac{ab}{c}\right)\)

\(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\left(a^2+b^2+c^2\right)=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2\ge1+2=3\)

Vậy \(P_{min}=\sqrt{3}\) \(\Leftrightarrow\) \(a=b=c=\frac{\sqrt{3}}{3}\)

3 tháng 4 2017

Kamishamunita

28 tháng 11 2019

Trước tiên ta cần chứng minh :

\(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Trong 3 số : \(\hept{\begin{cases}a-1\\b-1\\c-1\end{cases}}\) sẽ có ít nhất 2 số cùng dấu 

Giả sử hai số đó là : \(a-1,b-1\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow2c\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow2abc\ge2\left(ac+bc-c\right)\)

Giờ ta cần chứng minh : \(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow b^2-2ab+a^2+c^2-2c+1\ge0\)

\(\Leftrightarrow\left(b-a\right)^2+\left(c-1\right)^2\ge0\) ( đúng )

\(\Rightarrow\) ta có đpcm 

Quay lại bài toán ban đầu ta có :

\(P=a^2+b^2+c^2+2abc+\frac{18}{ab+bc+ac}\ge2\left(ab+bc+ca\right)-1+\frac{18}{ab+bc+ca}\)

\(\ge2.2.3\sqrt{\frac{ab+bc+ca}{ab+bc+ca}}-1=11\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

28 tháng 11 2019

Vai trò của a, b, c là bình đẳng, không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\)

Ta có BĐT quen thuộc sau: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Có: \(VT-VP=\left(\sqrt{a}-\sqrt{b}\right)^2\left(a+b+2\sqrt{ab}-2c\right)+\left(c-1\right)^2+2c\left(\sqrt{ab}-1\right)^2\ge0\)(vì \(c=min\left\{a,b,c\right\}\)

Từ đó \(P\ge2\left(ab+bc+ca\right)+\frac{18}{ab+bc+ca}-1\)

\(\ge2\sqrt{2\left(ab+bc+ca\right).\frac{18}{ab+bc+ca}}-1=11\)

Đẳng thức xảy ra khi a = b = c =  1