K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:

\(S\ge\frac{x^3}{x^2+y^2+\frac{x^2+y^2}{2}}+\frac{y^3}{y^2+z^2+\frac{y^2+z^2}{2}}+\frac{z^3}{z^2+x^2+\frac{z^2+x^2}{2}}\)

\(\Rightarrow S\ge\frac{2x^3}{3\left(x^2+y^2\right)}+\frac{2y^3}{3\left(y^2+z^2\right)}+\frac{2z^3}{3\left(z^2+x^2\right)}\Rightarrow\frac{3}{2}S\ge P=\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\)

\(\Rightarrow P=x-\frac{xy^2}{x^2+y^2}+y-\frac{yz^2}{y^2+z^2}+z-\frac{zx^2}{z^2+x^2}\ge\left(x+y+z\right)-\left(\frac{xy^2}{2xy}+\frac{yz^2}{2yz}+\frac{zx^2}{2xz}\right)\)

\(=\left(x+y+z\right)-\frac{1}{2}\left(x+y+z\right)=\frac{9}{2}\)

\(\Rightarrow\frac{3}{2}S\ge\frac{9}{2}\Rightarrow S\ge3\)

Vậy Min S=3 khi x=y=z=3

23 tháng 9 2017

hok lp 6 000000000000 biet toan lp 9 dau ma lm , tk di , giai cho

15 tháng 8 2020

TỪ GT =>    \(3\le xy+yz+zx\)

=>    \(P\ge\frac{x^3}{\sqrt{y^2+xy+yz+zx}}+\frac{y^3}{\sqrt{z^2+xy+yz+zx}}+\frac{z^3}{\sqrt{x^2+xy+yz+zx}}\)

=>     \(P\ge\frac{x^3}{\sqrt{\left(x+y\right)\left(y+z\right)}}+\frac{y^3}{\sqrt{\left(z+x\right)\left(z+y\right)}}+\frac{z^3}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:

=> \(\hept{\begin{cases}\sqrt{x+y}.\sqrt{y+z}\le\frac{x+2y+z}{2}\\\sqrt{z+x}.\sqrt{z+y}\le\frac{x+y+2z}{2}\\\sqrt{x+y}.\sqrt{x+z}\le\frac{2x+y+z}{2}\end{cases}}\)

=>   \(P\ge\frac{2x^3}{x+2y+z}+\frac{2y^3}{x+y+2z}+\frac{2z^3}{2x+y+z}\)

=>   \(P\ge\frac{2x^4}{x^2+2xy+2xz}+\frac{2y^4}{xy+y^2+2yz}+\frac{2z^4}{2xz+yz+z^2}\)

TA TIẾP TỤC ÁP DỤNG BĐT CAUCHY - SCHWARZ SẼ ĐƯỢC: 

=>   \(P\ge\frac{2\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

TA CÓ 1 BĐT SAU:      \(xy+yz+zx\le x^2+y^2+z^2\)      (*)

=>   \(P\ge\frac{2\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}\)

=>   \(P\ge\frac{2\left(x^2+y^2+z^2\right)^2}{4\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{2}\)

TA LẠI 1 LẦN NỮA SỬ DỤNG BĐT (*) SẼ ĐƯỢC:  

=>   \(P\ge\frac{xy+yz+zx}{2}\ge\frac{3}{2}\left(gt\right)\)

DẤU "=" XẢY RA <=>   \(x=y=z\)

VẬY P MIN \(=\frac{3}{2}\Leftrightarrow x=y=z=1\)

15 tháng 8 2020

Ta có :

\(P\ge\frac{x^3}{\sqrt{y^2+xy+yz+zx}}+\frac{y^3}{\sqrt{z^2+xy+yz+zx}}+\frac{z^3}{\sqrt{z^2+xy+yz+zx}}\)

\(=\frac{x^3}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{y^3}{\sqrt{\left(z+x\right)\left(z+y\right)}}+\frac{z^3}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

\(\ge\frac{2x^3}{x+2y+z}+\frac{2y^3}{x+y+2z}+\frac{2z^3}{2x+y+z}\)\(\ge2.\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)+3.\left(xy+yz+zx\right)}\ge2.\frac{\left(xy+yz+zx\right)^2}{4.\left(xy+yz+zx\right)}\ge2.\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

26 tháng 4 2020

Ta có \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)

\(=\frac{\frac{\left(yz+1\right)^2}{z^2}}{\frac{zx+1}{x}}+\frac{\frac{\left(zx+1\right)^2}{x^2}}{\frac{xy+1}{y}}+\frac{\frac{\left(xy+1\right)^2}{y^2}}{\frac{yz+1}{z}}\)

\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)

Áp dụng BĐT \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\frac{a_3^2}{b_3}\ge\frac{\left(a_1+a_2+a_3\right)^2}{b_1+b_2+b_3}\)

Dấu "=" xảy ra khi \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=\frac{a_3}{c_3}\)

\(P=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)

\(P\ge a+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Áp dụng BĐT: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

=> \(P\ge x+y+z+\frac{9}{x+y+z}=\left[x+y+z+\frac{9}{4\left(x+y+z\right)}\right]+\frac{27}{4\left(x+y+z\right)}\)

Ta có: \(x+y+z+\frac{9}{4\left(x+y+z\right)}\ge2\sqrt{\frac{9}{4}}=3;\frac{27}{4\left(x+y+z\right)}=\frac{27}{4\cdot\frac{3}{2}}=\frac{9}{2}\)

=> \(P\ge3+\frac{9}{2}=\frac{15}{2}\).

Dấu "=" xảy ra <=> x=y=z=\(\frac{1}{2}\)

Vậy MinP=\(\frac{15}{2}\)đạt được khi x=y=z=\(\frac{1}{2}\)

26 tháng 4 2020

Ta có:

\(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)

\(=\frac{\left(\frac{yz+1}{z}\right)^2}{\left(\frac{zx+1}{x}\right)}+\frac{\left(\frac{zx+1}{x}\right)^2}{\left(\frac{xy+1}{y}\right)}+\frac{\left(\frac{xy+1}{y}\right)^2}{\left(\frac{yz+1}{z}\right)}\)

\(=\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)

Áp dụng BĐT Bunhiacopxki dạng phân thức, ta có:

\(\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}+\frac{\left(z+\frac{1}{x}\right)^2}{x+\frac{1}{y}}+\frac{\left(x+\frac{1}{y}\right)^2}{y+\frac{1}{z}}\)\(\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\ge\left(x+y+z\right)+\frac{9}{x+y+z}=\left(x+y+z\right)+\frac{9}{4\left(x+y+z\right)}\)

\(+\frac{27}{4\left(x+y+z\right)}\ge2\sqrt{\left(x+y+z\right).\frac{9}{4\left(x+y+z\right)}}+\frac{27}{4.\frac{3}{2}}=\frac{15}{2}\)(Áp dụng BĐT Cô - si cho 2 số không âm)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{2}\)

29 tháng 5 2019

https://diendantoanhoc.net/topic/167390-cmr-sum-fracx3y38geq-frac19frac227xyyzzx/ 

bạn tham khảo nhé

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

17 tháng 1 2019

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

Theo giả thiết,ta có: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}=\frac{3}{abc}\)

Nhân hai vế với abc: \(a+b+c=3\) tức là \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Lại có:\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{xyz}\)

Ta cần c/m: \(A\ge\frac{3}{2}\)

Do x,y,z > 0 áp dụng BĐT Cô si: \(x^3+y^3+z^3\ge3xyz=xy+yz+zx\)

Áp dụng BĐT Cô si: \(A\ge3\sqrt[3]{\frac{x^3y^3z^3}{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)

\(=3xyz.\frac{1}{\sqrt[3]{\left(z+x^2\right)\left(x+y^2\right)\left(y+z^2\right)}}\)\(\ge3xyz.\frac{xy+yz+zx}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3\left(x^2y^2z+xy^2z^2+x^2yz^2\right)}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\ge\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x^2+y^2+z^2\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}\)

\(=\frac{3x^2y^2z^2}{\left(x+y+z\right)\left(x+y+z+1\right)-6xyz}\)

\(=\frac{3x^2y^2z^2}{xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left[xyz\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+1\right]-6xyz}\)

\(=\frac{3x^2y^2z^2}{3xyz\left[3xyz+1\right]-6xyz}=\frac{3x^2y^2z^2}{9x^2y^2z^2-3xyz}\)

Đặt \(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}\)

Ta sẽ c/m: \(B\ge\frac{2}{3}\).Thật vậy,ta có:

\(B=\frac{1}{A}=\frac{9x^2y^2z^2-3xyz}{3x^2y^2z^2}=3-\frac{3}{3xyz}\)\(=3-\frac{1}{xyz}\ge0\)

Suy ra \(A\ge0?!?\) có gì đó sai sai.Ai biết chỉ  giùm

18 tháng 1 2019

Nghĩ mãi mới ra -.- Để ý cái số mũ 3 trên tử khó mà dùng trực tiếp Cô-si hoặc  Bunhia nên phải tách nó ra

Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}=x-\frac{xz}{x^2+z}\)

                                                                     \(\ge x-\frac{xz}{2x\sqrt{z}}\)(Cô-si)

                                                                       \(=x-\frac{\sqrt{z}}{2}\)

                                                                        \(\ge x-\frac{z+1}{4}\)(Dùng bđt \(\sqrt{z}\le\frac{z+1}{2}\))

 Tương tự \(\frac{y^3}{y^2+z}\ge y-\frac{x+1}{4}\)

               \(\frac{z^3}{z^2+y}\ge z-\frac{y+1}{4}\)

Cộng từng vế của các bđt trên lại được

\(A\ge x+y+z-\frac{x+y+z+3}{4}=\frac{3x+3y+3z-3}{4}\)

                                                                   \(=\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\)

Từ điều kiện \(xy+yz+zx=3xyz\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Rightarrow x+y+z\ge3\)

Quay trở lại với A

\(A\ge\frac{3\left(x+y+z\right)}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{3}{2}=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)(Do \(3=\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\))

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z\\xy+yz+zx=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy .............

2 tháng 6 2017

Câu hỏi của Minh Hà Tuấn - Toán lớp 9 - Học toán với OnlineMath