K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2015

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Áp dung BĐT cô si cho 2 số không âm ta được:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

\(\frac{a}{c}+\frac{c}{a}\ge2\sqrt{\frac{a}{c}.\frac{c}{a}}=2\)

\(\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{b}{c}.\frac{c}{b}}=2\)

Suy ra: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3+2+2+2=9\left(\text{ điều phải chứng minh}\right)\)

30 tháng 9 2015

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+b.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+c.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=\left(1+1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Áp dụng tổng hai phân số nghịch đảo lớn hơn hoặc bằng 2 ta có :

\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)

=> ĐPCM

2 tháng 9 2016

Cách 1. Áp dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a.\frac{1}{a}}+\sqrt{b.\frac{1}{b}}+\sqrt{c.\frac{1}{c}}\right)^2=\left(1+1+1\right)^2=9\)

Cách 2. Áp dụng bđt Cauchy : 

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

2 tháng 9 2016

Bđt cauchy đi

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

17 tháng 8 2019

Dat \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

Ta co: \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Ta d̃i CM:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Ta co:\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\left(dpcm\right)\)

Dau '=' xay ra khi \(a=b=c\)

4 tháng 10 2016

Ta có :

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\)

\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\right)\)

\(\frac{1}{6}\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\right)\ge\sqrt[6]{\frac{a}{b}.\frac{a}{c}.\frac{b}{a}.\frac{b}{c}.\frac{c}{a}.\frac{c}{b}}\)

\(\Rightarrow\frac{1}{6}\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\right)\ge\sqrt[6]{1}\)

\(\Rightarrow\frac{1}{6}\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\right)\ge1\)

\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge1:\frac{1}{6}=6\)

\(\Rightarrow3+\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\right)\ge3+6=9\)

~

4 tháng 10 2016

Còn 1 cách dùng BĐT Cauchy:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

\(=3+\left[\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\right]\)

Áp dụng BĐT Cauchy cho \(\frac{a}{b}+\frac{b}{a};\frac{a}{c}+\frac{c}{a};\frac{b}{c}+\frac{c}{b};\)có :

\(\left(\frac{a}{b}+\frac{b}{a}\right)+\ge2\)

\(\left(\frac{b}{c}+\frac{c}{b}\right)\ge2\)

\(\left(\frac{a}{c}+\frac{c}{a}\right)\ge2\)

\(\Rightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge2+2+2=6\)

Tương tự, bạn làm tiếp.

5 tháng 1 2019

Áp dụng bất đẳng thức Cô-si cho 3 số ta được

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân 2 vế của bất đẳng thức trên lại ta được đpcm

Dấu ''='' <=> a = b = c

6 tháng 1 2019

ko dùng đến BĐT cauchy cx dc!

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=1+1+1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}\)

\(=3+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)

Ta có:\(\frac{a}{c}+\frac{c}{a}\ge2\),thật vậy:

Gỉa sử \(a\ge c\),khi đó:\(a=c+m\)

\(\Rightarrow\frac{a}{c}+\frac{c}{a}=\frac{c+m}{c}+\frac{c}{c+m}=1+\frac{m}{c}+\frac{c}{c+m}\ge1+\frac{m}{c+m}+\frac{c}{c+m}=1+\frac{m+c}{m+c}=1+1=2\)

Chứng minh tương tự,ta được:

\(\hept{\begin{cases}\frac{c}{b}+\frac{b}{c}\ge2\\\frac{a}{b}+\frac{b}{a}\ge2\end{cases}}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{c}{b}+\frac{b}{c}\ge6\)

\(\Rightarrow3+\frac{a}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{c}{b}+\frac{b}{c}\ge9\left(đpcm\right)\)

4 tháng 10 2016

Áp dụng bđt cô si cho 2 số dương ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)