K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2020

Với ab + bc + ca = 1 thì:

\(Q=\frac{2a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}=\)\(\frac{2a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(=\sqrt{\frac{2a}{a+b}.\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}.\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}.\frac{c}{2\left(b+c\right)}}\)

\(\le\frac{\frac{2a}{a+b}+\frac{2a}{a+c}}{2}+\frac{\frac{2b}{a+b}+\frac{b}{2\left(b+c\right)}}{2}+\frac{\frac{2c}{a+c}+\frac{c}{2\left(b+c\right)}}{2}\)(Theo BĐT Cô - si)

\(=\frac{\frac{2\left(a+b\right)}{a+b}+\frac{b+c}{2\left(b+c\right)}+\frac{2\left(a+c\right)}{a+c}}{2}=\frac{2+\frac{1}{2}+2}{2}=\frac{9}{4}\)

Đẳng thức xảy ra khi a = b = c = 1

26 tháng 5 2020

\(Q=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\) chứ?

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

22 tháng 1 2020

Bài toán quy về 2 bài toán nhỏ hơn!

Cho các số dương ab + bc +ca = 1. 

a) Tìm Max: \(M=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

(Lời giải tại: Câu hỏi của Nguyễn Linh Chi. Bài làm của anh Thắng, trong lời giải có phần giống với đề bên trên.)

b) Tìm Min: \(N=a^2+28b^2+28c^2\)

Có: \(N=\frac{1}{4}\left(2a-7b-7c\right)^2+\frac{63}{4}\left(b-c\right)^2+7\left(ab+bc+ca\right)\ge7\left(ab+bc+ca\right)=7\)

Từ đó tìm được \(P\le\frac{9}{4}-7=-\frac{19}{4}\)

Đẳng thức xảy ra khi \(a=\frac{7}{\sqrt{15}};b=c=\frac{1}{\sqrt{15}}\)

2 tháng 6 2020

Với ab + bc + ca = 1 và áp dụng BĐT AM - GM, ta được:

\(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)\(\frac{2a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(=\sqrt{\frac{2a}{a+b}.\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}.\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}.\frac{c}{2\left(b+c\right)}}\)

\(\le\frac{\frac{2a}{a+b}+\frac{2a}{a+c}}{2}+\frac{\frac{2b}{a+b}+\frac{b}{2\left(b+c\right)}}{2}+\frac{\frac{2c}{a+c}+\frac{c}{2\left(b+c\right)}}{2}\)

\(=\frac{\frac{2\left(a+b\right)}{a+b}+\frac{2\left(a+c\right)}{a+c}+\frac{b+c}{2\left(b+c\right)}}{2}=\frac{2+2+\frac{1}{2}}{2}=\frac{9}{4}\)(*)

Mặt khác, cũng theo AM - GM, ta có:

 \(\frac{a^2}{2}+\frac{49b^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{49b^2}{2}}=7ab\)(1)

\(\frac{a^2}{2}+\frac{49c^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{49c^2}{2}}=7ac\)(2)

\(\frac{7}{2}\left(b^2+c^2\right)\ge\frac{7}{2}.2\sqrt{b^2c^2}=7bc\)(3)

Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được:

\(\frac{2a^2+56b^2+56c^2}{2}\ge7\left(ab+bc+ca\right)=7\)

hay \(a^2+28b^2+28c^2\ge7\)(**)

Từ (*) và (**) suy ra \(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}-a^2-28b^2-28c^2\)

\(\le\frac{9}{4}-7=\frac{-19}{4}\)

Đẳng thức xảy ra khi \(a=\frac{7}{\sqrt{15}};b=c=\frac{1}{\sqrt{15}}\)

3 tháng 2 2020

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

3 tháng 2 2020

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)

NV
29 tháng 3 2023

\(Q=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{a+c}.\dfrac{c}{2\left(b+c\right)}}\)

\(\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{a+c}+\dfrac{c}{2\left(b+c\right)}\right)\)

\(=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\)

2 tháng 12 2016

câu bất này dễ mà Việt Anh

3 tháng 12 2016

nhưng mình kém lắm

ko làm đc

giúp đi

1 tháng 1 2018

Áp dụng bđt bu nhi a, ta có 

\(P^2\le3\left(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\right)\)

Áp dụng bđt cô si, ta có 

\(a^2+b^2\ge2ab;b^2+1\ge2b\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)

tương tự với mấy cái kia =>\(P^2\le\frac{3}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+a}+\frac{1}{ca+a+1}\right)\)

mà với abc =1, thì bạn sẽ chứng minh được \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\)

phân thức thứ 1 để nguyê, phân thức thứ 2 nhân với ab, phân thức thứ 3 nhân với b, rồi chỗ napf có abc thì thay abc=1

thì bạn sẽ chứng minh được cái kia=1 

=>\(P\le\sqrt{\frac{3}{2}}\)

dâu = xảy ra <=>a=b=c=1

4 tháng 7 2020

Dễ thấy theo AM - GM :

\(\frac{1}{\sqrt{a^2+2b^2+3}}=\frac{1}{\sqrt{\left(a^2+b\right)+\left(b^2+1\right)+2}}\le\frac{1}{\sqrt{2ab+2b+2}}\)

\(\le\frac{\sqrt{6}}{4}\left(\frac{1}{ab+b+1}+\frac{1}{3}\right)\)

Tương tự:

\(\frac{1}{\sqrt{b^2+2c^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{bc+c+1}+\frac{1}{3}\right);\frac{1}{\sqrt{c^2+2a^2+3}}\le\frac{\sqrt{6}}{4}\left(\frac{1}{ca+a^2+1}+\frac{1}{3}\right)\)

Cộng lại ta sẽ có đpcm

Vì dễ thấy \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\) với abc=1

\(P=\frac{ab}{\sqrt{\left(c+a\right)\left(b+c\right)}}+\frac{bc}{\sqrt{\left(c+a\right)\left(a+b\right)}}+\frac{ca}{\sqrt{\left(b+c\right)\left(a+b\right)}}\)

thử dùng cô si đi

20 tháng 8 2017

sửa ab thành a2 mới làm như Thành được nhé :v