K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

thử a=b=c=1/3 -->đề sai

24 tháng 5 2018

Bài này sai rồi nha bn!!

Áp dụng bdt Bunhiacopski

\(\sqrt{4-a^2}+\sqrt{4-b^2}+\sqrt{4-c^2}<=\sqrt{3*(12-(a^2+b^2+c^2))} a^2+b^2+c^2>=(a+b+c)^2/3 = 1/3 <\sqrt{35} \)

Vậy là phải bé hơn hoặc bằng căn 35 mới đúng đề!

22 tháng 8 2020

Bất đẳng thức cần chứng minh tương đương \(\frac{\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}}{\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}}\le2.\sqrt{2}.\sqrt[3]{9}\)

Ta quy bài toán về chứng minh hai bất đẳng thức sau 

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le3\sqrt{2}\)và \(\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}\ge\frac{\sqrt[3]{3}}{2}\)

Áp dụng bất đẳng thức Bunyakovsky ta được \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\le\sqrt{6\left(a^2+b^2+c^2\right)}\)\(\le\sqrt{6\sqrt{3\left(a^4+b^4+c^4\right)}}\le3\sqrt{2}\)

Mặt khác ta lại có \(\left[\left(x^3+y^3+z^3\right)\left(x+y+z\right)\right]^2\ge\left(x^2+y^2+z^2\right)^4\)\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Do đó ta được \(\left(x^3+y^3+z^3\right)^2\ge\frac{\left(x^2+y^2+z^2\right)^3}{3}\)

Áp dụng kết quả trên ta thu được \(\left[\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}\right]^2\ge\frac{1}{3}\left[\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right]^3\)

Mà theo bất đẳng thức Cauchy-Schwarz ta có\(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{1}{2\left(a^2+b^2\right)}+\frac{1}{2\left(b^2+c^2\right)}+\frac{1}{2\left(c^2+a^2\right)}\) \(\ge\frac{9}{4\left(a^2+b^2+c^2\right)}\ge\frac{9}{4\sqrt{3\left(a^4+b^4+c^4\right)}}\ge\frac{9}{4\sqrt{9}}=\frac{3}{4}\)

Do đó ta có \(\left[\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}\right]^2\ge\frac{1}{3}\left[\frac{3}{4}\right]^3=\frac{9}{64}\)

Suy ra \(\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}\ge\frac{\sqrt[3]{3}}{2}\)

Từ các kết quả trên ta được \(\frac{\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}}{\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}}\le\frac{3\sqrt{2}}{\frac{\sqrt[3]{3}}{2}}=2.\sqrt{2}.\sqrt[3]{9}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

6 tháng 5 2021

Ta có \(\sqrt{1+a^2}+\sqrt{2a}\le\sqrt{2\left(1+a^2+2a\right)}=\sqrt{2}\left(a+1\right)\).

Tương tự \(\sqrt{1+b^2}+\sqrt{2b}\le\sqrt{2}\left(b+1\right)\)\(\sqrt{1+c^2}+\sqrt{2c}\le\sqrt{2}\left(c+1\right)\).

Lại có \(\left(2-\sqrt{2}\right)\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\le\left(2-\sqrt{2}\right)\sqrt{3\left(a+b+c\right)}\le3\left(2-\sqrt{2}\right)\).

Do đó \(B\le\sqrt{2}\left(a+b+c+3\right)+3\left(2-\sqrt{2}\right)\le6\sqrt{2}+6-3\sqrt{2}=3\sqrt{2}+6\).

Dấu "=" xảy ra khi a = b = c = 1.

1 tháng 11 2019

Áp dụng bất đẳng thức Cauchy - Schwarz

\(3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow a+b+c\ge3\)

Và 

\(VT^2=\left(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\right)^2\)

\(\le\left(5a+4+5b+4+5c+4\right)\left(1+1+1\right)\)

\(\Leftrightarrow VT^2\le15\left(a+b+c\right)+36\)

Mà \(3\le a+b+c\left(cmt\right)\)

\(\Rightarrow VT^2\le15\left(a+b+c\right)+12\left(a+b+c\right)=27\left(a+b+c\right)\)

\(\Rightarrow VT\le3\sqrt{3\left(a+b+c\right)}\)

Ta có đpcm

Dấu " = " xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
8 tháng 5 2019

Lời giải:

\(a+b+c=4; b,c>0\Rightarrow a=4-b-c< 4\)

\(\Rightarrow a^4< 4a^3\)

\(\Rightarrow \frac{a^4}{4}< a^3\Rightarrow \frac{a}{\sqrt[4]{4}}< \sqrt[4]{a^3}\). Hoàn toàn tương tự:

\(\frac{b}{\sqrt[4]{4}}< \sqrt[4]{b^3}; \frac{c}{\sqrt[4]{4}}< \sqrt[4]{c^3}\)

Cộng theo vế:

\(\Rightarrow \sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}> \frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)

Ta có đpcm.

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)